A340931 Heinz numbers of integer partitions of odd numbers into an odd number of parts.
2, 5, 8, 11, 17, 18, 20, 23, 31, 32, 41, 42, 44, 45, 47, 50, 59, 67, 68, 72, 73, 78, 80, 83, 92, 97, 98, 99, 103, 105, 109, 110, 114, 124, 125, 127, 128, 137, 149, 153, 157, 162, 164, 167, 168, 170, 174, 176, 179, 180, 182, 188, 191, 195, 197, 200, 207, 211
Offset: 1
Keywords
Examples
The sequence of terms together with the corresponding partitions begins: 2: (1) 50: (3,3,1) 109: (29) 5: (3) 59: (17) 110: (5,3,1) 8: (1,1,1) 67: (19) 114: (8,2,1) 11: (5) 68: (7,1,1) 124: (11,1,1) 17: (7) 72: (2,2,1,1,1) 125: (3,3,3) 18: (2,2,1) 73: (21) 127: (31) 20: (3,1,1) 78: (6,2,1) 128: (1,1,1,1,1,1,1) 23: (9) 80: (3,1,1,1,1) 137: (33) 31: (11) 83: (23) 149: (35) 32: (1,1,1,1,1) 92: (9,1,1) 153: (7,2,2) 41: (13) 97: (25) 157: (37) 42: (4,2,1) 98: (4,4,1) 162: (2,2,2,2,1) 44: (5,1,1) 99: (5,2,2) 164: (13,1,1) 45: (3,2,2) 103: (27) 167: (39) 47: (15) 105: (4,3,2) 168: (4,2,1,1,1)
Crossrefs
Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A160786.
The case of where the prime indices are also odd is A300272.
A001222 counts prime factors.
A056239 adds up prime indices.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]
Comments