cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340931 Heinz numbers of integer partitions of odd numbers into an odd number of parts.

Original entry on oeis.org

2, 5, 8, 11, 17, 18, 20, 23, 31, 32, 41, 42, 44, 45, 47, 50, 59, 67, 68, 72, 73, 78, 80, 83, 92, 97, 98, 99, 103, 105, 109, 110, 114, 124, 125, 127, 128, 137, 149, 153, 157, 162, 164, 167, 168, 170, 174, 176, 179, 180, 182, 188, 191, 195, 197, 200, 207, 211
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This is a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with the corresponding partitions begins:
      2: (1)             50: (3,3,1)        109: (29)
      5: (3)             59: (17)           110: (5,3,1)
      8: (1,1,1)         67: (19)           114: (8,2,1)
     11: (5)             68: (7,1,1)        124: (11,1,1)
     17: (7)             72: (2,2,1,1,1)    125: (3,3,3)
     18: (2,2,1)         73: (21)           127: (31)
     20: (3,1,1)         78: (6,2,1)        128: (1,1,1,1,1,1,1)
     23: (9)             80: (3,1,1,1,1)    137: (33)
     31: (11)            83: (23)           149: (35)
     32: (1,1,1,1,1)     92: (9,1,1)        153: (7,2,2)
     41: (13)            97: (25)           157: (37)
     42: (4,2,1)         98: (4,4,1)        162: (2,2,2,2,1)
     44: (5,1,1)         99: (5,2,2)        164: (13,1,1)
     45: (3,2,2)        103: (27)           167: (39)
     47: (15)           105: (4,3,2)        168: (4,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A160786.
The even version is A236913 (A340784).
The case of where the prime indices are also odd is A300272.
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A027193 counts odd-length partitions (A026424).
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A058695 counts partitions of odd numbers (A300063).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]

Formula

Intersection of A026424 and A300063.