A340932 Numbers whose least prime index is odd. Heinz numbers of integer partitions whose last part is odd.
2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 54, 55, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 80, 82, 83, 84, 85, 86, 88, 90, 92, 94, 95, 96, 97
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 24: {1,1,1,2} 46: {1,9} 4: {1,1} 25: {3,3} 47: {15} 5: {3} 26: {1,6} 48: {1,1,1,1,2} 6: {1,2} 28: {1,1,4} 50: {1,3,3} 8: {1,1,1} 30: {1,2,3} 52: {1,1,6} 10: {1,3} 31: {11} 54: {1,2,2,2} 11: {5} 32: {1,1,1,1,1} 55: {3,5} 12: {1,1,2} 34: {1,7} 56: {1,1,1,4} 14: {1,4} 35: {3,4} 58: {1,10} 16: {1,1,1,1} 36: {1,1,2,2} 59: {17} 17: {7} 38: {1,8} 60: {1,1,2,3} 18: {1,2,2} 40: {1,1,1,3} 62: {1,11} 20: {1,1,3} 41: {13} 64: {1,1,1,1,1,1} 22: {1,5} 42: {1,2,4} 65: {3,6} 23: {9} 44: {1,1,5} 66: {1,2,5}
Crossrefs
These partitions are counted by A026804.
The case where all prime indices are odd is A066208.
Looking at greatest prime index instead of least gives A244991.
A001222 counts prime factors.
A005408 lists odd numbers.
A031368 lists odd-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.
Programs
-
Mathematica
Select[Range[100],OddQ[PrimePi[FactorInteger[#][[1,1]]]]&]
Comments