A087897
Number of partitions of n into odd parts greater than 1.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0
1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01: [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03: [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04: [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05: [ 1 1 1 2 5 5 5 2 1 1 1 ]
06: [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07: [ 1 1 3 5 5 5 3 1 1 ]
08: [ 1 1 7 7 7 1 1 ]
09: [ 1 2 2 5 5 5 2 2 1 ]
10: [ 1 4 5 5 5 4 1 ]
11: [ 2 2 2 2 3 3 3 2 2 2 2 ]
12: [ 2 3 5 5 5 3 2 ]
13: [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
7 53 9 55 B 75 D 77 F 97 H 99 J
333 73 533 93 553 95 555 B5 755 B7 775
3333 733 B3 753 D3 773 D5 955
5333 933 5533 953 F3 973
33333 7333 B33 5553 B53
53333 7533 D33
9333 55333
333333 73333
(End)
- J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I
- Chai Wah Wu, Table of n, a(n) for n = 0..10000 (n = 0..1000 from Alois P. Heinz)
- C. Ballantine and M. Merca, Padovan numbers as sums over partitions into odd parts, Journal of Inequalities and Applications, (2016) 2016:1; doi.
- B. C. Berndt, B. Kim, and A. J. Yee, Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions, J. Comb. Thy. Ser. A, 117 (2010), 957-973.
- Howard D. Grossman, Problem 228, Mathematics Magazine, 28 (1955), p. 160.
- R. K. Guy, Two theorems on partitions, Math. Gaz., 42 (1958), 84-86. Math. Rev. 20 #3110.
- Cristiano Husu, The butterfly sequence: the second difference sequence of the numbers of integer partitions with distinct parts, its pentagonal number structure, its combinatorial identities and the cyclotomic polynomials 1-x and 1+x+x^2, arXiv:1804.09883 [math.NT], 2018.
- James Mc Laughlin, Andrew V. Sills, and Peter Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
The version for factorizations is
A340101.
Partitions whose only even part is the smallest are counted by
A341447.
The Heinz numbers of these partitions are given by
A341449.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by
A340932.
A340385 counts partitions with odd length and maximum, ranked by
A340386.
-
a087897 = p [3,5..] where
p [] _ = 0
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 12 2011
-
To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> b(n, n-1+irem(n, 2)):
seq(a(n), n=0..80); # Alois P. Heinz, Jun 11 2013
-
max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A087897_T(n,k):
if n==0: return 1
if k<3 or n<0: return 0
return A087897_T(n,k-2)+A087897_T(n-k,k)
def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz
A341446
Heinz numbers of integer partitions whose only odd part is the smallest.
Original entry on oeis.org
2, 5, 6, 11, 14, 17, 18, 23, 26, 31, 35, 38, 41, 42, 47, 54, 58, 59, 65, 67, 73, 74, 78, 83, 86, 95, 97, 98, 103, 106, 109, 114, 122, 126, 127, 137, 142, 143, 145, 149, 157, 158, 162, 167, 174, 178, 179, 182, 185, 191, 197, 202, 209, 211, 214, 215, 222, 226
Offset: 1
The sequence of partitions together with their Heinz numbers begins:
2: (1) 54: (2,2,2,1) 109: (29)
5: (3) 58: (10,1) 114: (8,2,1)
6: (2,1) 59: (17) 122: (18,1)
11: (5) 65: (6,3) 126: (4,2,2,1)
14: (4,1) 67: (19) 127: (31)
17: (7) 73: (21) 137: (33)
18: (2,2,1) 74: (12,1) 142: (20,1)
23: (9) 78: (6,2,1) 143: (6,5)
26: (6,1) 83: (23) 145: (10,3)
31: (11) 86: (14,1) 149: (35)
35: (4,3) 95: (8,3) 157: (37)
38: (8,1) 97: (25) 158: (22,1)
41: (13) 98: (4,4,1) 162: (2,2,2,2,1)
42: (4,2,1) 103: (27) 167: (39)
47: (15) 106: (16,1) 174: (10,2,1)
These partitions are counted by
A035363 (shifted left once).
Terms of
A340932 can be factored into elements of this sequence.
A026804 counts partitions whose smallest part is odd.
A032742 selects largest proper divisor.
A055396 selects smallest prime index.
A061395 selects largest prime index.
A066207 lists numbers with all even prime indices.
A066208 lists numbers with all odd prime indices.
A112798 lists the prime indices of each positive integer.
A244991 lists numbers whose greatest prime index is odd.
A340932 lists numbers whose smallest prime index is odd.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],OddQ[First[primeMS[#]]]&&And@@EvenQ[Rest[primeMS[#]]]&]
A349158
Heinz numbers of integer partitions with exactly one odd part.
Original entry on oeis.org
2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1
The terms and corresponding partitions begin:
2: (1) 42: (4,2,1) 86: (14,1)
5: (3) 45: (3,2,2) 93: (11,2)
6: (2,1) 47: (15) 95: (8,3)
11: (5) 51: (7,2) 97: (25)
14: (4,1) 54: (2,2,2,1) 98: (4,4,1)
15: (3,2) 58: (10,1) 99: (5,2,2)
17: (7) 59: (17) 103: (27)
18: (2,2,1) 65: (6,3) 105: (4,3,2)
23: (9) 67: (19) 106: (16,1)
26: (6,1) 69: (9,2) 109: (29)
31: (11) 73: (21) 114: (8,2,1)
33: (5,2) 74: (12,1) 119: (7,4)
35: (4,3) 77: (5,4) 122: (18,1)
38: (8,1) 78: (6,2,1) 123: (13,2)
41: (13) 83: (23) 126: (4,2,2,1)
These partitions are counted by
A000070 up to 0's.
These are the positions of 1's in
A257991.
The even prime indices are counted by
A257992.
The conjugate partitions are ranked by
A345958.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse:
A344616).
A325698 ranks partitions with as many even as odd parts, counted by
A045931.
A349157 ranks partitions with as many even parts as odd conjugate parts.
Cf.
A000700,
A001222,
A027187,
A027193,
A028260,
A031368 (primes with odd index),
A035363,
A215366,
A277579,
A300063,
A349151.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[primeMS[#],_?OddQ]==1&]
A372591
Numbers whose binary weight (A000120) plus bigomega (A001222) is even.
Original entry on oeis.org
2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2} 2 (1)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{1,2,3,4} 15 (3,2)
{1,2,5} 19 (8)
{4,5} 24 (2,1,1,1)
{3,4,5} 28 (4,1,1)
{1,2,3,4,5} 31 (11)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{1,2,3,6} 39 (6,2)
{4,6} 40 (3,1,1,1)
{1,4,6} 41 (13)
{2,4,6} 42 (4,2,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A340933
Numbers whose least prime index is even. Heinz numbers of integer partitions whose last part is even.
Original entry on oeis.org
3, 7, 9, 13, 15, 19, 21, 27, 29, 33, 37, 39, 43, 45, 49, 51, 53, 57, 61, 63, 69, 71, 75, 77, 79, 81, 87, 89, 91, 93, 99, 101, 105, 107, 111, 113, 117, 119, 123, 129, 131, 133, 135, 139, 141, 147, 151, 153, 159, 161, 163, 165, 169, 171, 173, 177, 181, 183
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 51: {2,7} 99: {2,2,5}
7: {4} 53: {16} 101: {26}
9: {2,2} 57: {2,8} 105: {2,3,4}
13: {6} 61: {18} 107: {28}
15: {2,3} 63: {2,2,4} 111: {2,12}
19: {8} 69: {2,9} 113: {30}
21: {2,4} 71: {20} 117: {2,2,6}
27: {2,2,2} 75: {2,3,3} 119: {4,7}
29: {10} 77: {4,5} 123: {2,13}
33: {2,5} 79: {22} 129: {2,14}
37: {12} 81: {2,2,2,2} 131: {32}
39: {2,6} 87: {2,10} 133: {4,8}
43: {14} 89: {24} 135: {2,2,2,3}
45: {2,2,3} 91: {4,6} 139: {34}
49: {4,4} 93: {2,11} 141: {2,15}
These partitions are counted by
A026805.
A061395 selects greatest prime index.
A112798 lists the prime indices of each positive integer.
A372588
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.
Original entry on oeis.org
2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2} 2 (1)
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{4} 8 (1,1,1)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,2,3,4} 15 (3,2)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{1,3,5} 21 (4,2)
{4,5} 24 (2,1,1,1)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{4,6} 40 (3,1,1,1)
{1,4,6} 41 (13)
{3,4,6} 44 (5,1,1)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066208,
A160786,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372586
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.
Original entry on oeis.org
1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{2} 2 (1)
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{4} 8 (1,1,1)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,2,3,4} 15 (3,2)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{1,3,4,5} 29 (10)
{6} 32 (1,1,1,1,1)
{3,6} 36 (2,2,1,1)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
{2,3,4,6} 46 (9,1)
{1,2,3,4,6} 47 (15)
{5,6} 48 (2,1,1,1,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]
A372589
Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.
Original entry on oeis.org
3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{1,4} 9 (2,2)
{3,4} 12 (2,1,1)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{3,5} 20 (3,1,1)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,2,6} 35 (4,3)
{3,6} 36 (2,2,1,1)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
{1,2,3,6} 39 (6,2)
{2,4,6} 42 (4,2,1)
{1,2,4,6} 43 (14)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
Cf.
A000720,
A006141,
A066207,
A243055,
A257991,
A300272,
A304818,
A340604,
A341446,
A372429-
A372433,
A372438.
-
Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]
A372590
Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.
Original entry on oeis.org
1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{1} 1 ()
{1,2} 3 (2)
{3} 4 (1,1)
{1,3} 5 (3)
{3,4} 12 (2,1,1)
{2,3,4} 14 (4,1)
{5} 16 (1,1,1,1)
{1,5} 17 (7)
{2,5} 18 (2,2,1)
{3,5} 20 (3,1,1)
{1,3,5} 21 (4,2)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{1,3,4,5} 29 (10)
{2,3,4,5} 30 (3,2,1)
{1,2,6} 35 (4,3)
{2,3,6} 38 (8,1)
{1,2,4,6} 43 (14)
{1,3,4,6} 45 (3,2,2)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
A372587
Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.
Original entry on oeis.org
6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1
The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
{2,3} 6 (2,1)
{1,2,3} 7 (4)
{2,4} 10 (3,1)
{1,2,4} 11 (5)
{1,3,4} 13 (6)
{2,3,4} 14 (4,1)
{2,5} 18 (2,2,1)
{1,2,5} 19 (8)
{2,3,5} 22 (5,1)
{1,2,3,5} 23 (9)
{4,5} 24 (2,1,1,1)
{1,4,5} 25 (3,3)
{2,4,5} 26 (6,1)
{1,2,4,5} 27 (2,2,2)
{3,4,5} 28 (4,1,1)
{2,3,4,5} 30 (3,2,1)
{1,2,3,4,5} 31 (11)
{1,6} 33 (5,2)
{2,6} 34 (7,1)
{1,2,6} 35 (4,3)
{1,3,6} 37 (12)
{2,3,6} 38 (8,1)
For just binary indices:
For just prime indices:
A070939 gives length of binary expansion.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]
Showing 1-10 of 14 results.
Comments