A340953 Number of ways to write n as an ordered sum of 8 nonzero triangular numbers.
1, 0, 8, 0, 28, 8, 56, 56, 70, 176, 84, 336, 196, 448, 492, 504, 953, 616, 1456, 960, 1814, 1792, 1904, 3032, 2100, 4144, 3052, 4768, 4670, 5264, 6720, 5936, 8876, 7112, 10620, 9648, 11718, 12720, 13216, 15960, 15261, 19608, 17164, 23296, 21226, 25424, 26796, 27272, 32844
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..10000
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; local r, t, d; r, t, d:= $0..2; if n=0 then `if`(k=0, 1, 0) else while t<=n do r:= r+b(n-t, k-1); t, d:= t+d, d+1 od; r fi end: a:= n-> b(n, 8): seq(a(n), n=8..56); # Alois P. Heinz, Jan 31 2021
-
Mathematica
nmax = 56; CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^8, {x, 0, nmax}], x] // Drop[#, 8] &
Formula
G.f.: (theta_2(sqrt(x)) / (2 * x^(1/8)) - 1)^8, where theta_2() is the Jacobi theta function.