A340986 Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
Offset: 0
Examples
Square array T(n,k) begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 3, 10, 21, 36, 55, ... 0, 19, 92, 255, 544, 995, ... 0, 211, 1354, 4725, 12196, 26215, ... 0, 3651, 29252, 123903, 377904, 939155, ...
References
- R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.
Links
- Alois P. Heinz, Antidiagonals n = 0..100, flattened
Crossrefs
Programs
-
Maple
T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n): seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 02 2021
-
Mathematica
nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}]; Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid
Formula
Let E(x) = Sum_{n>=0} x^n/n!^2. Then Sum_{n>=0} T(n,k)*x^n/n!^2 = 1/E(-x)^k.
T(n,k) = (n!)^2 * [x^n] 1/BesselJ(0,2*sqrt(x))^k. - Alois P. Heinz, Feb 02 2021
For fixed k>=1, T(n,k) ~ n!^2 * n^(k-1) / ((k-1)! * r^(n + k/2) * BesselJ(1, 2*sqrt(r))^k), where r = BesselJZero(0,1)^2 / 4 = A115368^2/4 = 1.4457964907366961302939989396139517587... - Vaclav Kotesovec, Jul 11 2025
Comments