cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340987 Number of colored integer partitions of 2n such that all colors from an n-set are used.

Original entry on oeis.org

1, 2, 10, 59, 362, 2287, 14719, 95965, 631714, 4189334, 27946335, 187319827, 1260570515, 8511460908, 57634550179, 391232510284, 2661483301282, 18140003082945, 123846214549072, 846801764644618, 5797865791444367, 39745254613927264, 272762265331208465
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2021

Keywords

Examples

			a(1) = 2: 2a, 1a1a.
a(2) = 10: 3a1b, 3b1a, 2a2b, 2a1b1b, 2b1a1a, 2a1a1b, 2b1a1b, 1a1b1b1b, 1a1a1b1b, 1a1a1a1b.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<2, combinat[numbpart](n+1),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k<2, PartitionsP[n+1], With[{q = Quotient[k, 2]}, Sum[b[j, q] b[n-j, k-q], {j, 0, n}]]];
    a[n_] := b[n, n];
    a /@ Range[0, 25] (* Jean-François Alcover, Feb 04 2021, after Alois P. Heinz *)
    Table[SeriesCoefficient[(-1 + 1/QPochhammer[Sqrt[x]])^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jan 15 2024 *)
    (* Calculation of constant d: *) 1/r/.FindRoot[{1 + s == 1/QPochhammer[Sqrt[r*s]], 1/(1 + s) + Sqrt[r]*(1 + s)*Derivative[0, 1][QPochhammer][Sqrt[r*s], Sqrt[r*s]] / (2*Sqrt[s]) == (Log[1 - Sqrt[r*s]] + QPolyGamma[0, 1, Sqrt[r*s]]) / (s*Log[r*s])}, {r, 1/7}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 15 2024 *)

Formula

a(n) = [x^(2n)] (-1 + Product_{j>0} 1/(1-x^j))^n.
a(n) = A060642(2*n,n).
a(n) = Sum_{i=0..n} (-1)^i * C(n,i) * A144064(2n,n-i).
a(n) ~ c * d^n / sqrt(n), where d = 7.0224714601856191637116674203375767768930294104680988528373522936595686998... and c = 0.306577097117652483059452115503859901867921865482563952948772592499558... - Vaclav Kotesovec, Feb 14 2021