A340991 Triangle T(n,k) whose k-th column is the k-fold self-convolution of the primes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 2, 0, 3, 4, 0, 5, 12, 8, 0, 7, 29, 36, 16, 0, 11, 58, 114, 96, 32, 0, 13, 111, 291, 376, 240, 64, 0, 17, 188, 669, 1160, 1120, 576, 128, 0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256, 0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512, 0, 29, 679, 4851, 16754, 34123, 44652, 38416, 21248, 6912, 1024
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 2; 0, 3, 4; 0, 5, 12, 8; 0, 7, 29, 36, 16; 0, 11, 58, 114, 96, 32; 0, 13, 111, 291, 376, 240, 64; 0, 17, 188, 669, 1160, 1120, 576, 128; 0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256; 0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, ithprime(n)), (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2)))) end: seq(seq(T(n, k), k=0..n), n=0..12); # Uses function PMatrix from A357368. PMatrix(10, ithprime); # Peter Luschny, Oct 09 2022
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, Prime[n]], With[{q = Quotient[k, 2]}, Sum[T[j, q] T[n - j, k - q], {j, 0, n}]]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)
Formula
T(n,k) = [x^n] (Sum_{j>=1} prime(j)*x^j)^k.
Sum_{k=0..n} k * T(n,k) = A030281(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A030018(n).
Conjecture: row polynomials are x*R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) + x*R(n-1,1)*R(1,k) for n > 1, k > 0 with R(1,k) = prime(k) for k > 0. The same recursion seems to work for self-convolution of any other sequence. - Mikhail Kurkov, Apr 05 2025