A340992 a(n) is the (2n)-th term of the n-fold self-convolution of the number of divisors function tau.
1, 2, 8, 41, 216, 1172, 6491, 36430, 206472, 1179104, 6774048, 39107400, 226683903, 1318427762, 7690414740, 44970645116, 263545466456, 1547445069318, 9101515979306, 53613206171619, 316243949777696, 1867702439169958, 11042787840419398, 65357054283015120
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1281
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, numtheory[tau](n+1), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n$2): seq(a(n), n=0..23);
-
Mathematica
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0], If[k == 1, If[n == 0, 0, DivisorSigma[0, n]], With[{q = Quotient[k, 2]}, Sum[T[j, q]*T[n - j, k - q], {j, 0, n}]]]]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz in A320019 *)
Formula
a(n) = [x^(2n)] (Sum_{j>=1} tau(j)*x^j)^n.
a(n) = A320019(2n,n).