cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A340994 a(n) is the (2n)-th term of the n-fold self-convolution of the Euler totient function phi.

Original entry on oeis.org

1, 1, 5, 19, 89, 391, 1817, 8429, 39697, 187849, 894965, 4282191, 20572961, 99158645, 479294877, 2322365959, 11276837761, 54860498415, 267336028565, 1304677123305, 6375749480369, 31195075605755, 152798541606529, 749184538847397, 3676699991008897
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1,
          `if`(k=1, numtheory[phi](n+1), (q->
           add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..29);

Formula

a(n) = [x^(2n)] (Sum_{j>=1} mu(j)*x^j/(1-x^j)^2)^n.
a(n) = A340995(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 5.0117569538757703168577972551675369123003378927616324330274512382246419... and c = 0.287455327702489527773675891801880332800309441856159133456758815116... - Vaclav Kotesovec, Aug 18 2021