A341029 Twice the area of the convex hull around dragon curve expansion level n.
0, 1, 3, 9, 23, 56, 121, 258, 539, 1118, 2273, 4614, 9323, 18806, 37761, 75798, 151979, 304598, 609793, 1220694, 2442923, 4888406, 9779201, 19562838, 39131819, 78273878, 156557313, 313132374, 626289323, 1252619606, 2505277441, 5010625878, 10021350059
Offset: 0
Examples
@ *---@ curve expansion level n=3, | | | convex hull vertices marked "@", @---* *---@ area = 4+1/2, | a(3) = 2*area = 9 @---@
Links
- Kevin Ryde, Table of n, a(n) for n = 0..600
- Agnes I. Benedek and Rafael Panzone, On Some Notable Plane Sets, II: Dragons, Revista de la Unión Matemática Argentina, volume 39, numbers 1-2, 1994, pages 76-90.
- Kevin Ryde, Iterations of the Dragon Curve, see index "HA".
- Index entries for linear recurrences with constant coefficients, signature (3,-3,3,2,-12,12,-12,8).
Crossrefs
Programs
-
PARI
my(h=[22,29,22,31]); a(n) = if(n<2,n, (7<
Formula
For n>=2, a(n) = (7/3)*2^n - (h/6)*2^floor(n/2) + c/3, where h = 22,29,22,31 and c = 1,2,3,2 according as n == 0,1,2,3 (mod 4) respectively.
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) + 2*a(n-4) - 12*a(n-5) + 12*a(n-6) - 12*a(n-7) + 8*a(n-8) for n>=10.
G.f.: x*(1 + 3*x^2 + 2*x^3 + 3*x^4 + x^5 - 2*x^7 - 4*x^8) /( (1-x) * (1-2*x) * (1+x^2) * (1-2*x^2) * (1+2*x^2) ).
G.f.: 1 + (1/2)*x + (2/3)/(1-x) - (1/3)/(1+x^2) + (1/6)*x/(1+2*x^2) - (11/3 + 5*x)/(1-2*x^2) + (7/3)/(1-2*x).
Comments