A341030 Decimal expansion of the perimeter of the convex hull around the dragon curve fractal.
4, 1, 2, 9, 2, 7, 3, 1, 0, 0, 1, 5, 3, 7, 0, 8, 2, 2, 7, 8, 5, 9, 3, 1, 4, 8, 3, 2, 9, 2, 3, 6, 2, 8, 0, 5, 4, 7, 7, 7, 2, 3, 7, 8, 1, 6, 1, 3, 8, 2, 6, 3, 8, 3, 1, 0, 2, 9, 8, 0, 3, 7, 5, 8, 4, 3, 4, 4, 6, 0, 4, 9, 5, 4, 4, 4, 2, 9, 4, 9, 7, 2, 5, 0, 7, 4, 8, 4, 2, 6, 7, 4, 5, 8, 4, 3, 8, 4, 3, 1, 6, 1, 8, 2, 9
Offset: 1
Examples
4.1292731001...
Links
- Kevin Ryde, Table of n, a(n) for n = 1..10000
- Agnes I. Benedek and Rafael Panzone, On Some Notable Plane Sets, II: Dragons, Revista de la Unión Matemática Argentina, volume 39, numbers 1-2, 1994, pages 76-90.
- Kevin Ryde, Iterations of the Dragon Curve, see index "HBf".
Crossrefs
Cf. A341029 (finite hull areas).
Programs
-
Mathematica
RealDigits[2/3 + (1 + Sqrt[2])*(5 + Sqrt[13])/6, 10, 120][[1]] (* Amiram Eldar, Jun 28 2023 *)
Formula
Equals 3/2 + (5/6)*sqrt(2) + (1/6)*sqrt(13) + (1/6)*sqrt(26).
Equals 2/3 + (1 + sqrt(2))*(5 + sqrt(13))/6.
Largest root of 81*x^4 - 486*x^3 + 693*x^2 - 282*x + 17 = 0 (all its roots are real).
Comments