A341042 Multiplicative projection of odd part of n.
1, 1, 3, 1, 5, 3, 7, 1, 6, 5, 11, 3, 13, 7, 15, 1, 17, 6, 19, 5, 21, 11, 23, 3, 10, 13, 9, 7, 29, 15, 31, 1, 33, 17, 35, 6, 37, 19, 39, 5, 41, 21, 43, 11, 30, 23, 47, 3, 14, 10, 51, 13, 53, 9, 55, 7, 57, 29, 59, 15, 61, 31, 42, 1, 65, 33, 67, 17, 69, 35, 71, 6, 73, 37, 30
Offset: 1
Examples
a(54) = a(2 * 3^3) = 3 * 3 = 9.
Links
Programs
-
Maple
a:= n-> mul(`if`(i[1]=2, 1, i[1]*i[2]), i=ifactors(n)[2]): seq(a(n), n=1..75); # Alois P. Heinz, Feb 03 2021
-
Mathematica
a[n_] := Times @@ (#[[1]] #[[2]] & /@ FactorInteger[n/2^IntegerExponent[n, 2]]); Table[a[n], {n, 75}]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1]==2, 1, f[i,1] * f[i,2]));} \\ Amiram Eldar, Nov 12 2022
Formula
a(n) = A000026(n) if n odd, a(n) = a(n/2) if n even.
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = e*p for p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (6*zeta(2)^2/17) * Product_{p prime} (1 - 3/p^2 + 2/p^3 + 1/p^4 - 1/p^5) = 0.2947570019... . (End)