cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A341064 Number of ways to write n as an ordered sum of 4 squarefree numbers.

Original entry on oeis.org

1, 4, 10, 16, 23, 32, 50, 68, 83, 92, 116, 148, 178, 192, 224, 276, 335, 360, 400, 460, 547, 580, 634, 704, 821, 868, 938, 1024, 1162, 1212, 1288, 1392, 1572, 1628, 1742, 1876, 2123, 2172, 2308, 2460, 2761, 2820, 2964, 3176, 3550, 3628, 3778, 4028, 4481, 4528, 4686, 4932, 5513, 5564
Offset: 4

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 4):
    seq(a(n), n=4..57);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 57; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^4, {x, 0, nmax}], x] // Drop[#, 4] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^4.

A341065 Number of ways to write n as an ordered sum of 5 squarefree numbers.

Original entry on oeis.org

1, 5, 15, 30, 50, 76, 120, 180, 250, 315, 401, 520, 670, 805, 955, 1160, 1445, 1715, 1980, 2290, 2741, 3180, 3605, 4040, 4690, 5341, 5985, 6600, 7490, 8380, 9251, 10060, 11240, 12415, 13595, 14670, 16295, 17850, 19425, 20780, 22905, 24905, 26895, 28600, 31335, 33966, 36485, 38620
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..52);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^5.

A341066 Number of ways to write n as an ordered sum of 6 squarefree numbers.

Original entry on oeis.org

1, 6, 21, 50, 96, 162, 267, 426, 645, 902, 1218, 1632, 2187, 2826, 3543, 4402, 5547, 6906, 8397, 10032, 12108, 14578, 17298, 20112, 23517, 27534, 32034, 36592, 41892, 48018, 54886, 61758, 69549, 78408, 88365, 98274, 109478, 122058, 136230, 150114, 165759, 183114, 202630, 221484
Offset: 6

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Examples

			G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^6.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 6):
    seq(a(n), n=6..49);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 49; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^6, {x, 0, nmax}], x] // Drop[#, 6] &

A341067 Number of ways to write n as an ordered sum of 7 squarefree numbers.

Original entry on oeis.org

1, 7, 28, 77, 168, 315, 553, 932, 1505, 2282, 3297, 4634, 6447, 8771, 11607, 15029, 19390, 24885, 31500, 39137, 48335, 59584, 73003, 88109, 105525, 126112, 150472, 177632, 208160, 243194, 284102, 329357, 379379, 435477, 500108, 571124, 648998, 735112, 833483, 940765, 1057679
Offset: 7

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 7):
    seq(a(n), n=7..47);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 47; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^7, {x, 0, nmax}], x] // Drop[#, 7] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^7.

A341068 Number of ways to write n as an ordered sum of 8 squarefree numbers.

Original entry on oeis.org

1, 8, 36, 112, 274, 568, 1072, 1912, 3263, 5280, 8128, 12048, 17474, 24824, 34428, 46600, 62163, 82160, 107452, 138392, 176116, 222560, 279756, 348168, 428954, 524848, 639976, 775448, 932376, 1113808, 1326748, 1573656, 1855767, 2175728, 2544048, 2965280, 3441568, 3974744, 4580060
Offset: 8

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 8):
    seq(a(n), n=8..46);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 46; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^8, {x, 0, nmax}], x] // Drop[#, 8] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^8.

A341069 Number of ways to write n as an ordered sum of 9 squarefree numbers.

Original entry on oeis.org

1, 9, 45, 156, 423, 963, 1959, 3708, 6669, 11410, 18594, 29052, 44046, 65196, 94284, 133104, 184248, 251406, 338995, 450936, 591885, 768657, 990567, 1265832, 1602273, 2010294, 2506572, 3107136, 3825675, 4676643, 5686347, 6882912, 8290431, 9928305, 11834289, 14052816, 16624846
Offset: 9

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 9):
    seq(a(n), n=9..45);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^9, {x, 0, nmax}], x] // Drop[#, 9] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^9.

A341098 Number of partitions of n into 10 distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 6, 8, 7, 10, 14, 17, 17, 22, 32, 35, 37, 47, 62, 71, 72, 91, 114, 132, 136, 167, 205, 234, 247, 293, 355, 398, 426, 497, 590, 661, 708, 819, 956, 1066, 1141, 1306, 1501, 1672, 1791, 2030, 2318, 2559, 2747, 3081, 3490, 3835, 4115
Offset: 72

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(numtheory[issqrfree](i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 10):
    seq(a(n), n=72..126);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[SquareFreeQ[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 10];
    Table[a[n], {n, 72, 126}] (* Jean-François Alcover, Feb 24 2022, after Alois P. Heinz *)
Showing 1-7 of 7 results.