cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A341072 Number of compositions of 2n into n Fibonacci parts.

Original entry on oeis.org

1, 1, 3, 7, 23, 71, 231, 750, 2479, 8251, 27673, 93248, 315515, 1071097, 3646618, 12445982, 42571327, 145895599, 500855361, 1722062265, 5929045173, 20439121983, 70539320558, 243695962031, 842704577995, 2916613479471, 10102511916071, 35018749192885
Offset: 0

Views

Author

Alois P. Heinz, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) g(n):= (t-> issqr(t+4) or issqr(t-4))(5*n^2) end:
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(g(j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..35);
  • Mathematica
    g[n_] := g[n] = With[{t = 5*n^2}, IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4]];
    b[n_, t_] := b[n, t] =
         If[n == 0, If[t == 0, 1, 0], If[t < 1, 0, Sum[
         If[g[j], b[n - j, t - 1], 0], {j, 1, n}]]];
    a[n_] := b[2n, n];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 02 2022, after Alois P. Heinz *)

Formula

a(n) = A121548(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 3.532272846853808150678856189005437981671101510837727... and c = 0.2903295565097076269212760734928134309226027... - Vaclav Kotesovec, Feb 14 2021

A341153 Number of partitions of 2*n into exactly n squarefree parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 9, 13, 16, 23, 27, 37, 44, 59, 70, 91, 107, 138, 162, 205, 240, 300, 350, 432, 504, 615, 715, 865, 1003, 1206, 1394, 1663, 1918, 2276, 2618, 3088, 3544, 4160, 4764, 5566, 6360, 7401, 8440, 9779, 11131, 12854, 14602, 16803, 19051, 21859, 24741, 28303
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 52; CoefficientList[Series[Product[1/(1 - MoebiusMu[k + 1]^2 x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d MoebiusMu[d + 1]^2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 52}]

Formula

G.f.: Product_{k>=1} 1 / (1 - mu(k+1)^2 * x^k).
Showing 1-2 of 2 results.