A341102 T(n, k) = [n, k] - {n, k}, where [n, k] are the (unsigned) Stirling cycle numbers and {n, k} the Stirling set numbers. Table T(n, k) read by rows, for n >= 3 and 1 <= k <= n-2.
1, 5, 4, 23, 35, 10, 119, 243, 135, 20, 719, 1701, 1323, 385, 35, 5039, 12941, 12166, 5068, 910, 56, 40319, 109329, 115099, 59514, 15498, 1890, 84, 362879, 1026065, 1163370, 689575, 226800, 40446, 3570, 120, 3628799, 10627617, 12725075, 8263750, 3170200, 722568, 93786, 6270, 165
Offset: 3
Examples
Triangle starts: [ 3] [1] [ 4] [5, 4] [ 5] [23, 35, 10] [ 6] [119, 243, 135, 20] [ 7] [719, 1701, 1323, 385, 35] [ 8] [5039, 12941, 12166, 5068, 910, 56] [ 9] [40319, 109329, 115099, 59514, 15498, 1890, 84] [10] [362879, 1026065, 1163370, 689575, 226800, 40446, 3570, 120]
Links
- Peter Luschny, The difference of the Stirling cycle numbers and the Stirling set numbers, Mathematics Stack Exchange, Feb. 2021.
Programs
-
Maple
# Giving full rows for n >= 0: gf := (1 - z)^(-x) - exp(x*(exp(z) - 1)); ser := series(gf, z, 20): coeffz := n -> coeff(ser,z,n): A341102row := n -> seq(n!*coeff(coeffz(n), x, k), k=0..n): for n from 0 to 9 do A341102row(n) od;
-
PARI
T(n,k) = abs(stirling(n,k,1)) - stirling(n,k,2); \\ Michel Marcus, Feb 24 2021
-
SageMath
for n in (3..11): print([stirling_number1(n, k) - stirling_number2(n, k) for k in (1..n-2)])
Formula
T(n, k) = Sum_{j=0..k} (binomial(n+j-1, 2*k) - binomial(n+k-j, 2*k))*A340556(k, j).
E.g.f.: (1 - z)^(-x) - exp(x*(exp(z) - 1)) (unrestricted rows and n >= 0).