A341142 Number of partitions of n into 5 distinct prime powers (including 1).
1, 0, 1, 2, 3, 3, 5, 5, 7, 8, 10, 12, 15, 15, 18, 21, 23, 26, 31, 33, 36, 41, 43, 48, 52, 58, 62, 72, 72, 82, 85, 95, 97, 112, 112, 125, 127, 142, 142, 161, 159, 181, 180, 200, 196, 222, 217, 243, 239, 269, 261, 291, 284, 316, 308, 341, 332, 370, 358, 394, 381, 427, 414, 456
Offset: 15
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 15..5000
Crossrefs
Programs
-
Maple
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end: b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(q(i), b(n-i, min(n-i, i-1), t-1), 0))) end: a:= n-> b(n$2, 5): seq(a(n), n=15..78); # Alois P. Heinz, Feb 05 2021
-
Mathematica
q[n_] := q[n] = PrimeNu[n] < 2; b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]]; a[n_] := b[n, n, 5]; Table[a[n], {n, 15, 78}] (* Jean-François Alcover, Jul 13 2021, after Alois P. Heinz *) Table[Count[IntegerPartitions[n,{5}],?(Max[PrimeNu[#]]<2&&Length[#]==Length[Union[#]]&)],{n,15,80}] (* _Harvey P. Dale, Dec 22 2024 *)