A341139 Number of ways to write n as an ordered sum of 10 prime powers (including 1).
1, 10, 55, 220, 715, 1992, 4915, 10990, 22660, 43660, 79463, 137830, 229460, 368710, 574410, 870644, 1287545, 1862110, 2639135, 3672050, 5024035, 6768950, 8992340, 11792070, 15279450, 19579514, 24832415, 31193900, 38837085, 47952400, 58750125, 71458860, 86328885
Offset: 10
Keywords
Crossrefs
Programs
-
Maple
q:= proc(n) option remember; nops(ifactors(n)[2])<2 end: b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add( `if`(q(j), b(n-j, t-1), 0), j=1..n))) end: a:= n-> b(n, 10): seq(a(n), n=10..42); # Alois P. Heinz, Feb 05 2021
-
Mathematica
nmax = 42; CoefficientList[Series[Sum[Boole[PrimePowerQ[k] || k == 1] x^k, {k, 1, nmax}]^10, {x, 0, nmax}], x] // Drop[#, 10] &