cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341143 Number of partitions of n into 6 distinct prime powers (including 1).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 5, 7, 8, 10, 10, 16, 16, 20, 22, 28, 27, 35, 36, 44, 47, 56, 57, 70, 72, 81, 89, 102, 105, 122, 128, 140, 151, 167, 175, 197, 208, 223, 241, 259, 272, 296, 316, 331, 359, 378, 400, 423, 452, 468, 507, 525, 556, 580, 619, 631, 684, 701, 748
Offset: 22

Views

Author

Ilya Gutkovskiy, Feb 05 2021

Keywords

Crossrefs

Programs

  • Maple
    q:= proc(n) option remember; nops(ifactors(n)[2])<2 end:
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(q(i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 6):
    seq(a(n), n=22..81);  # Alois P. Heinz, Feb 05 2021
  • Mathematica
    q[n_] := q[n] = Length[FactorInteger[n]] < 2;
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[q[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 6];
    Table[a[n], {n, 22, 81}] (* Jean-François Alcover, Feb 22 2022, after Alois P. Heinz *)