A341212 Numbers m such that m, m - 1, m - 2, m - 3 and m - 4 have k, 2k, 3k, 4k and 5k divisors respectively.
154379, 1075198, 4211518, 4700758, 4745227, 5954379, 6036043, 6330235, 6485998, 6524878, 6851227, 7846798, 8536027, 8556358, 11718598, 12100027, 12126838, 13584838, 14869379, 15320587, 16934998, 17074379, 18154379, 18904027, 19013129, 19774379, 19779995
Offset: 1
Keywords
Examples
tau(154375) = 20, tau(154376) = 16, tau(154377) = 12, tau(154378) = 8, tau(154379) = 4.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..2590
Programs
-
Magma
[m: m in [5..10^6] | #Divisors(m - 1) eq 2*#Divisors(m) and #Divisors(m - 2) eq 3*#Divisors(m) and #Divisors(m - 3) eq 4*#Divisors(m) and #Divisors(m - 4) eq 5*#Divisors(m)]
-
Mathematica
seq[max_, n_] := Module[{d = DivisorSigma[0, Range[n]], s = {}}, Do[If[Length @ Union[d/Range[n, 1, -1]] == 1, AppendTo[s, k - 1]]; d = Join[Rest@d, {DivisorSigma[0, k]}], {k, n + 1, max}]; s]; seq[5*10^6, 5] (* Amiram Eldar, Feb 08 2021 *)
-
PARI
isok(m) = if (m>5, my(nb=numdiv(m)); (numdiv(m-1) == 2*nb) && (numdiv(m-2) == 3*nb) && (numdiv(m-3) == 4*nb) && (numdiv(m-4) == 5*nb)); \\ Michel Marcus, Apr 01 2021
-
Python
def tau(n): # A000005 d, t = 1, 0 while d*d < n: if n%d == 0: t = t+2 d = d+1 if d*d == n: t = t+1 return t n, a = 1, 2 while n <= 27: nn, t1 = 1, tau(a) while nn < 5 and tau(a-nn) == (nn+1)*t1: nn = nn+1 if nn == 5: print(n,a) n = n+1 a = a+1 # A.H.M. Smeets, Feb 07 2021
Comments