A341229 Primes p such that (p^64 + 1)/2 is prime.
3, 353, 587, 727, 863, 883, 919, 1217, 1237, 1657, 2029, 2203, 2333, 3209, 3529, 3617, 3889, 4889, 5387, 5557, 5689, 5749, 6701, 6961, 7727, 8443, 9377, 9433, 10009, 10243, 10691, 10799, 11027, 12071, 12451, 13681, 13687, 15569, 15601, 15823, 16759, 17939
Offset: 1
Keywords
Examples
(3^64 + 1)/2 = 1716841910146256242328924544641 is prime, so 3 is a term. (5^64 + 1)/2 = 271050543121376108501863200217485427856445313 = 769*3666499598977*96132956782643741951225664001, so 5 is not a term.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= p-> (q-> q(p) and q((p^64+1)/2))(isprime): select(q, [$3..20000])[]; # Alois P. Heinz, Feb 07 2021
-
Mathematica
Select[Range[18000], PrimeQ[#] && PrimeQ[(#^64 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)
-
PARI
isok(p) = (p>2) && isprime(p) && ispseudoprime((p^64 + 1)/2); \\ Michel Marcus, Feb 07 2021
Comments