cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341229 Primes p such that (p^64 + 1)/2 is prime.

Original entry on oeis.org

3, 353, 587, 727, 863, 883, 919, 1217, 1237, 1657, 2029, 2203, 2333, 3209, 3529, 3617, 3889, 4889, 5387, 5557, 5689, 5749, 6701, 6961, 7727, 8443, 9377, 9433, 10009, 10243, 10691, 10799, 11027, 12071, 12451, 13681, 13687, 15569, 15601, 15823, 16759, 17939
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 07 2021

Keywords

Comments

Expressions of the form m^j + 1 can be factored (e.g., m^3 + 1 = (m + 1)*(m^2 - m + 1)) for any positive integer j except when j is a power of 2, so (p^j + 1)/2 for prime p cannot be prime unless j is a power of 2. A005383, A048161, A176116, A340480, A341210, A341224, and this sequence list primes of the form (p^j + 1)/2 for j=2^0=1, j=2^1=2, ..., j=2^6=64, respectively.

Examples

			(3^64 + 1)/2 = 1716841910146256242328924544641 is prime, so 3 is a term.
(5^64 + 1)/2 = 271050543121376108501863200217485427856445313 = 769*3666499598977*96132956782643741951225664001, so 5 is not a term.
		

Crossrefs

Primes p such that (p^(2^k) + 1)/2 is prime: A005383 (k=0), A048161 (k=1), A176116 (k=2), A340480 (k=3), A341210 (k=4), A341224 (k=5), (this sequence) (k=6).

Programs

  • Maple
    q:= p-> (q-> q(p) and q((p^64+1)/2))(isprime):
    select(q, [$3..20000])[];  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    Select[Range[18000], PrimeQ[#] && PrimeQ[(#^64 + 1)/2] &] (* Amiram Eldar, Feb 07 2021 *)
  • PARI
    isok(p) = (p>2) && isprime(p) && ispseudoprime((p^64 + 1)/2); \\ Michel Marcus, Feb 07 2021