A341233 Denominator of the expected fraction of guests without a napkin in Conway's napkin problem with n guests.
1, 1, 12, 96, 320, 3840, 161280, 516096, 46448640, 185794560, 2270822400, 163499212800, 1821848371200, 51011754393600, 10712468422656000, 9794256843571200, 555007887802368000, 139861987726196736000, 1449478781889675264000, 49059281848573624320000
Offset: 1
Examples
0, 0, 1/12, 11/96, 39/320, 473/3840, 19897/161280, 63683/516096, 5731597/46448640
Programs
-
Python
from sympy import denom, S, factorial def A341233(n): return denom(sum((1-S(2)**(2-k))/factorial(k) for k in range(2,n+1)))
-
Python
from math import factorial from fractions import Fraction def a(n): s = sum(Fraction(2**k-4, 2**k*factorial(k)) for k in range(2, n+1)) return s.denominator print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 07 2021