A248788 Decimal expansion of (2-sqrt(e))^2, the mean fraction of guests without a napkin in Conway’s napkin problem.
1, 2, 3, 3, 9, 6, 7, 4, 5, 6, 5, 8, 5, 3, 2, 6, 4, 7, 9, 6, 5, 6, 8, 4, 3, 2, 0, 0, 9, 6, 0, 0, 8, 2, 1, 1, 1, 4, 2, 1, 4, 2, 6, 9, 0, 8, 5, 9, 3, 6, 7, 5, 2, 8, 6, 6, 6, 6, 5, 0, 3, 8, 1, 1, 6, 1, 4, 3, 2, 5, 4, 5, 5, 7, 6, 6, 8, 5, 1, 6, 0, 0, 4, 0, 2, 7, 6, 0, 9, 8, 2, 9, 9, 6, 9, 9, 8, 5, 5, 4
Offset: 0
Examples
0.12339674565853264796568432009600821114214269085936752866665...
Links
- Anders Claesson and T. Kyle Petersen, Conway's napkin problem, arXiv:math/0505080 [math.CO], 2005.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 2.
Programs
-
Mathematica
RealDigits[(2 - Sqrt[E])^2, 10, 100] // First
-
PARI
(2-exp(1/2))^2 \\ Charles R Greathouse IV, Oct 31 2014