cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341232 Numerator of the expected fraction of guests without a napkin in Conway's napkin problem with n guests.

Original entry on oeis.org

0, 0, 1, 11, 39, 473, 19897, 63683, 5731597, 22926439, 280212089, 20175270749, 224810160067, 6294684482461, 1321883741325001, 1208579420640469, 68486167169628137, 17258514126746312369, 178860964586279976467, 6053755724458706915971, 3305350625554453976644453
Offset: 1

Views

Author

Pontus von Brömssen, Feb 07 2021

Keywords

Examples

			0, 0, 1/12, 11/96, 39/320, 473/3840, 19897/161280, 63683/516096, 5731597/46448640
		

References

  • Peter Winkler, Mathematical Puzzles: A Connoisseur's Collection, A K Peters, 2004, p. 122.

Crossrefs

Cf. A248788, A341233 (denominators).

Programs

  • Python
    from sympy import numer, S, factorial
    def A341232(n):
      return numer(sum((1-S(2)**(2-k))/factorial(k) for k in range(2,n+1)))
    
  • Python
    from math import factorial
    from fractions import Fraction
    def a(n):
      s = sum(Fraction(2**k-4, 2**k*factorial(k)) for k in range(2, n+1))
      return s.numerator
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 07 2021

Formula

a(n)/A341233(n) = Sum_{k=2..n} (1-2^(2-k))/k!.
Lim_{n->oo} a(n)/A341233(n) = (2-sqrt(e))^2 (A248788).

A341233 Denominator of the expected fraction of guests without a napkin in Conway's napkin problem with n guests.

Original entry on oeis.org

1, 1, 12, 96, 320, 3840, 161280, 516096, 46448640, 185794560, 2270822400, 163499212800, 1821848371200, 51011754393600, 10712468422656000, 9794256843571200, 555007887802368000, 139861987726196736000, 1449478781889675264000, 49059281848573624320000
Offset: 1

Views

Author

Pontus von Brömssen, Feb 07 2021

Keywords

Examples

			0, 0, 1/12, 11/96, 39/320, 473/3840, 19897/161280, 63683/516096, 5731597/46448640
		

Crossrefs

Cf. A248788, A341232 (numerators).

Programs

  • Python
    from sympy import denom, S, factorial
    def A341233(n):
      return denom(sum((1-S(2)**(2-k))/factorial(k) for k in range(2,n+1)))
    
  • Python
    from math import factorial
    from fractions import Fraction
    def a(n):
      s = sum(Fraction(2**k-4, 2**k*factorial(k)) for k in range(2, n+1))
      return s.denominator
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 07 2021

Formula

A341232(n)/a(n) = Sum_{k=2..n} (1-2^(2-k))/k!.
Lim_{n->oo} A341232(n)/a(n) = (2-sqrt(e))^2 (A248788).

A248789 Decimal expansion of the variance associated with the fraction of guests without a napkin in Conway’s napkin problem.

Original entry on oeis.org

0, 3, 4, 7, 6, 3, 1, 0, 5, 5, 6, 1, 0, 2, 6, 0, 6, 5, 6, 3, 3, 6, 9, 7, 4, 5, 4, 7, 7, 9, 4, 7, 0, 1, 0, 5, 2, 4, 0, 1, 2, 3, 6, 0, 0, 7, 0, 5, 0, 8, 5, 1, 8, 9, 1, 3, 5, 5, 5, 3, 1, 4, 1, 2, 0, 9, 1, 6, 4, 0, 1, 7, 1, 0, 3, 6, 6, 2, 4, 3, 0, 3, 7, 5, 2, 0, 2, 4, 2, 1, 2, 4, 9, 1, 2, 5, 6, 2, 7, 3
Offset: 0

Views

Author

Jean-François Alcover, Oct 14 2014

Keywords

Examples

			0.034763105561026065633697454779470105240123600705...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[(3 - E)*(2 - Sqrt[E])^2, 10, 99] // First]
  • PARI
    (3-exp(1))*(2-exp(1/2))^2 \\ Charles R Greathouse IV, Oct 31 2014

Formula

Equals (3 - e)*(2 - sqrt(e))^2.
Showing 1-3 of 3 results.