A341243 Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^4.
1, 0, 4, 4, 10, 16, 26, 44, 63, 100, 144, 212, 297, 420, 584, 796, 1081, 1452, 1940, 2556, 3355, 4372, 5668, 7288, 9327, 11892, 15076, 19012, 23884, 29904, 37276, 46284, 57276, 70680, 86918, 106528, 130220, 158784, 193054, 234076, 283178, 341824, 411616, 494512, 592933
Offset: 4
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 4..10000
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))) end: a:= n-> b(n, 4): seq(a(n), n=4..48); # Alois P. Heinz, Feb 07 2021
-
Mathematica
nmax = 48; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^4, {x, 0, nmax}], x] // Drop[#, 4] &
Formula
G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^4.
a(n) ~ A112160(n). - Vaclav Kotesovec, Feb 20 2021