A341253 Expansion of (-1 + Product_{k>=1} 1 / (1 + (-x)^k))^10.
1, 0, 10, 10, 55, 100, 265, 560, 1175, 2420, 4667, 9000, 16575, 30180, 53470, 93152, 159395, 268190, 444910, 727360, 1174563, 1873320, 2955010, 4611960, 7127305, 10912244, 16560430, 24924550, 37217620, 55160650, 81174270, 118651560, 172316445, 248718830, 356892660
Offset: 10
Keywords
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d] [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))) end: a:= n-> b(n, 10): seq(a(n), n=10..44); # Alois P. Heinz, Feb 07 2021
-
Mathematica
nmax = 44; CoefficientList[Series[(-1 + Product[1/(1 + (-x)^k), {k, 1, nmax}])^10, {x, 0, nmax}], x] // Drop[#, 10] &
Formula
G.f.: (-1 + Product_{k>=1} (1 + x^(2*k - 1)))^10.