A341319 Minimum number of cells needed in an n X n grid to win a majority of districts when all districts are required to be the same size.
1, 3, 4, 9, 9, 14, 16, 25, 25, 33, 36, 45, 49, 60, 64, 81, 81, 95, 100, 117, 121, 138, 144, 165, 169, 189, 196, 225, 225, 247, 256, 289, 289, 315, 324, 350, 361, 390, 400, 429, 441, 473, 484, 529, 529, 564, 576, 625, 625, 663, 676, 729, 729, 770, 784, 825, 841, 885, 900, 943
Offset: 1
Keywords
Examples
For a(3), divisors of 3^2 are 1, 3, 9: d=1: (floor(1/2)+1)*(floor(3^2/(2*1))+1) = 1*5 = 5 d=3: (floor(3/2)+1)*(floor(3^2/(2*3))+1) = 2*2 = 4 d=9: (floor(9/2)+1)*(floor(3^2/(2*9))+1) = 5*1 = 5 Party A only needs 4 cells out of 9 to win a majority of districts. For a(6), divisors of 6^2 are 1, 2, 3, 4, 6, 9, 12, 18, 36: By symmetry we can ignore d = 9, 12, 18 and 36; d=1: (floor(1/2)+1)*(floor(6^2/(2*1))+1) = 1*19 = 19 d=2: (floor(2/2)+1)*(floor(6^2/(2*2))+1) = 2*10 = 20 d=3: (floor(3/2)+1)*(floor(6^2/(2*3))+1) = 2*7 = 14 d=4: (floor(4/2)+1)*(floor(6^2/(2*4))+1) = 3*5 = 15 d=6: (floor(6/2)+1)*(floor(6^2/(2*6))+1) = 4*4 = 16 Party A only needs 14 cells out of 36 to win a majority of districts.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
a:= n->min(map(d->(iquo(d, 2)+1)*(iquo(n^2, 2*d)+1), numtheory[divisors](n^2))): seq(a(n), n=1..60); # Alois P. Heinz, Feb 09 2021
-
Mathematica
a[n_] := Table[(Floor[d/2]+1)*(Floor[n^2/(2d)]+1), {d, Divisors[n^2]}] // Min; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 04 2023 *)
-
PARI
a(n)={vecmin([(floor(d/2) + 1)*(floor(n^2/(2*d)) + 1) | d<-divisors(n^2)])} \\ Andrew Howroyd, Feb 09 2021
-
Python
from sympy import divisors def A341319(n): return min((d//2+1)*(e//2+1) for d,e in ((v,n**2//v) for v in divisors(n**2) if v <= n)) # Chai Wah Wu, Mar 05 2021
Formula
a(n) is the minimum value of (floor(d/2)+1)*(floor(n^2/(2*d))+1) over all divisors d of n^2.
Extensions
Terms a(29) and beyond from Andrew Howroyd, Feb 09 2021
Comments