A341385 Expansion of (-1 + Product_{k>=1} (1 + x^k)^k)^3.
1, 6, 27, 92, 279, 762, 1952, 4725, 10968, 24551, 53346, 112932, 233755, 474288, 945384, 1854517, 3585534, 6841182, 12895246, 24035841, 44337672, 80999765, 146644746, 263249169, 468817933, 828658233, 1454315508, 2535217624, 4391290854, 7560034419, 12939963016
Offset: 3
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 3..10000
Crossrefs
Programs
-
Maple
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(d^2/ `if`(d::odd, 1, 2), d=numtheory[divisors](j)), j=1..n)/n) end: b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, `if`(n=0, 0, g(n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))) end: a:= n-> b(n, 3): seq(a(n), n=3..33); # Alois P. Heinz, Feb 10 2021
-
Mathematica
nmax = 33; CoefficientList[Series[(-1 + Product[(1 + x^k)^k, {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &
Formula
a(n) ~ A027346(n). - Vaclav Kotesovec, Feb 20 2021