cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341396 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_7)^2 <= n.

Original entry on oeis.org

1, 15, 99, 379, 953, 1793, 3081, 5449, 8893, 12435, 16859, 24419, 33659, 42115, 53203, 69779, 88273, 106081, 125821, 153541, 187981, 217437, 248741, 298469, 351277, 394691, 446939, 515259, 589307, 657683, 728803, 828259, 939223, 1029159, 1124023, 1260103
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A008451.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 7)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 35; CoefficientList[Series[EllipticTheta[3, 0, x]^7/(1 - x), {x, 0, nmax}], x]
    Table[SquaresR[7, n], {n, 0, 35}] // Accumulate
  • PARI
    my(q='q+O('q^(55))); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^7/(1-q)) \\ Joerg Arndt, Jun 21 2024

Formula

G.f.: theta_3(x)^7 / (1 - x).
a(n^2) = A055413(n).