A341396 Number of integer solutions to (x_1)^2 + (x_2)^2 + ... + (x_7)^2 <= n.
1, 15, 99, 379, 953, 1793, 3081, 5449, 8893, 12435, 16859, 24419, 33659, 42115, 53203, 69779, 88273, 106081, 125821, 153541, 187981, 217437, 248741, 298469, 351277, 394691, 446939, 515259, 589307, 657683, 728803, 828259, 939223, 1029159, 1124023, 1260103
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0, b(n, k-1)+2*add(b(n-j^2, k-1), j=1..isqrt(n)))) end: a:= proc(n) option remember; b(n, 7)+`if`(n>0, a(n-1), 0) end: seq(a(n), n=0..35); # Alois P. Heinz, Feb 10 2021
-
Mathematica
nmax = 35; CoefficientList[Series[EllipticTheta[3, 0, x]^7/(1 - x), {x, 0, nmax}], x] Table[SquaresR[7, n], {n, 0, 35}] // Accumulate
-
PARI
my(q='q+O('q^(55))); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^7/(1-q)) \\ Joerg Arndt, Jun 21 2024
Formula
G.f.: theta_3(x)^7 / (1 - x).
a(n^2) = A055413(n).
Comments