A341414 a(n) = (Fibonacci(n)*Lucas(n)) mod 10.
0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9
Offset: 0
Examples
For n=5: a(5) = (Fibonacci(5)*Lucas(5)) mod 10 = (5*11) mod 10 = 55 mod 10 = 5.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0,1,0,0,-1,0,0,1).
Programs
-
Mathematica
Table[Mod[Fibonacci@n*LucasL@n, 10], {n, 0, 100}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
-
PARI
a(n) = fibonacci(2*(n%30)) % 10 \\ Jianing Song, Apr 04 2021
Formula
a(n) = (Fibonacci(n)*Lucas(n)) mod 10 = Fibonacci(2*n) mod 10 using Binet's formula for Fibonacci and corresponding formula for Lucas.
a(n) = a(n-30).
a(n) = a(n-3) - a(n-6) + a(n-9) - a(n-12) + a(n-15) - a(n-18) + a(n-21) - a(n-24) + a(n-27).
a(n) = A003893(2*n).
Comments