cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jens Rasmussen

Jens Rasmussen's wiki page.

Jens Rasmussen has authored 2 sequences.

A341414 a(n) = (Fibonacci(n)*Lucas(n)) mod 10.

Original entry on oeis.org

0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9
Offset: 0

Author

Jens Rasmussen, Feb 11 2021

Keywords

Comments

Fibonacci starting with 0,1 and Lucas starting with 2,1.
Blocks of 30 numbers with 10 even and 20 uneven numbers.
Symmetric as a(7-i)=a(8+i) for i=1,2,...,6, and a(22-j)=a(23+j) for j=1..21.
Decimal expansion of 13801675776055042253380279/999000999000999000999000999. - Jianing Song, Apr 04 2021

Examples

			For n=5: a(5) = (Fibonacci(5)*Lucas(5)) mod 10 = (5*11) mod 10 = 55 mod 10 = 5.
		

Crossrefs

Bisection of A003893.

Programs

  • Mathematica
    Table[Mod[Fibonacci@n*LucasL@n, 10], {n, 0, 100}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
  • PARI
    a(n) = fibonacci(2*(n%30)) % 10 \\ Jianing Song, Apr 04 2021

Formula

a(n) = (Fibonacci(n)*Lucas(n)) mod 10 = Fibonacci(2*n) mod 10 using Binet's formula for Fibonacci and corresponding formula for Lucas.
a(n) = a(n-30).
a(n) = a(n-3) - a(n-6) + a(n-9) - a(n-12) + a(n-15) - a(n-18) + a(n-21) - a(n-24) + a(n-27).
a(n) = A003893(2*n).

A341616 Table read by ascending antidiagonals: T(n,j) = Fibonacci(n)*Lucas(n+j), product of the n-th term in the Fibonacci sequence (with F(1)=1 and F(2)=1) and the (n+j)-th term in the Lucas sequence (with L(1)=1 and L(2)=3 and j=0,1,2,...).

Original entry on oeis.org

1, 3, 3, 8, 4, 4, 21, 14, 7, 7, 55, 33, 22, 11, 11, 144, 90, 54, 36, 18, 18, 377, 232, 145, 87, 58, 29, 29, 987, 611, 376, 235, 141, 94, 47, 47, 2584, 1596, 988, 608, 380, 228, 152, 76, 76, 6765, 4182, 2583, 1599, 984, 615, 369, 246, 123, 123
Offset: 1

Author

Jens Rasmussen, Feb 16 2021

Keywords

Comments

j is the offset when combining terms from the two initial sequences.

Examples

			T(4,3) = Fibonacci(4)*Lucas(4+3) = 3*29 = 87.
Square array showing T(n,j) begins:
      j=0 j=1 j=2 j=3 j=4  ..
  n=1   1   3   4   7  11  ..
  n=2   3   4   7  11  18  ..
  n=3   8  14  22  36  58  ..
  n=4  21  33  54  87 141  ..
  ...  ..  ..  ..  ..  ..  ..
		

Crossrefs

For j=0 the resulting sequence is used as input in A341414.

Programs

  • PARI
    T(n,j) = fibonacci(2*n+j) - (-1)^n*fibonacci(j);
    matrix(7,7,n,k, T(n,k-1)) \\ Michel Marcus, Mar 02 2021

Formula

For phi=(1+sqrt(5))/2 and tau=(1-sqrt(5))/2:
T(n,j) = Fibonacci(n)*Lucas(n+j).
T(n,j) = (phi^n - tau^n)*(phi^(n+j) + tau^(n+j))/sqrt(5).
T(n,j) = Fibonacci(2n+j) - (-1)^n*Fibonacci(j).
Lim_{n, j -> oo} T(n+1,j)/T(n,j) = phi^2 (A104457).
Lim_{n, j -> oo} T(n,j+1)/T(n,j) = phi (A001622).