A341616 Table read by ascending antidiagonals: T(n,j) = Fibonacci(n)*Lucas(n+j), product of the n-th term in the Fibonacci sequence (with F(1)=1 and F(2)=1) and the (n+j)-th term in the Lucas sequence (with L(1)=1 and L(2)=3 and j=0,1,2,...).
1, 3, 3, 8, 4, 4, 21, 14, 7, 7, 55, 33, 22, 11, 11, 144, 90, 54, 36, 18, 18, 377, 232, 145, 87, 58, 29, 29, 987, 611, 376, 235, 141, 94, 47, 47, 2584, 1596, 988, 608, 380, 228, 152, 76, 76, 6765, 4182, 2583, 1599, 984, 615, 369, 246, 123, 123
Offset: 1
Examples
T(4,3) = Fibonacci(4)*Lucas(4+3) = 3*29 = 87. Square array showing T(n,j) begins: j=0 j=1 j=2 j=3 j=4 .. n=1 1 3 4 7 11 .. n=2 3 4 7 11 18 .. n=3 8 14 22 36 58 .. n=4 21 33 54 87 141 .. ... .. .. .. .. .. ..
Crossrefs
Programs
-
PARI
T(n,j) = fibonacci(2*n+j) - (-1)^n*fibonacci(j); matrix(7,7,n,k, T(n,k-1)) \\ Michel Marcus, Mar 02 2021
Comments