cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341419 a(0) = 1, a(1) = 1, a(2^(n-1)..2^n-1) = fwht(0..2^(n-2)). Here "fwht" is the fast Walsh-Hadamard transform with natural ordering and without multiplication of any factors.

Original entry on oeis.org

1, 1, 2, 0, 4, 2, 0, -2, 8, 6, 8, -2, 0, -2, -8, -2, 16, 14, 24, -2, 32, 14, -8, -18, 0, -2, -8, -2, -32, -18, -8, 14, 32, 30, 56, -2, 96, 46, -8, -50, 128, 94, 120, -34, -32, -50, -136, -18, 0, -2, -8, -2, -32, -18, -8, 14, -128, -98, -136, 30, -32, 14, 120, 46, 64, 62
Offset: 0

Views

Author

Thomas Scheuerle, Mar 24 2021

Keywords

Comments

This sequence is a rough integer-valued approximation to one of the nontrivial solutions to f(n) = a*fwht(f(n)).

Crossrefs

Programs

  • MATLAB
    function a = A341419(max_n)
    a(1) = 1;
    a(2) = 1;
        while length(a) < max_n
            w = fwht(a,[],'hadamard')*length(a);
            %w = myfwht(a); % own implementation for documentation purpose
            a = [a w];
        end
    end
    function w = myfwht(in)
        h = 1;
        while h < length(in)
            for i = 1:h*2:length(in)
                for j = i:i+h-1
                    x = in(j);
                    y = in(j+h);
                    in(j) = x+y;
                    in(j+h) = x-y;
                end
            end
            h = h*2;
        end
        w = in;
    end

Formula

a(2^n) = 2^n.
a(2^n + 1) = 2^n-2 for n > 0.
a(2^n + 2) = 8*(2^(n-2) - 1) = A159741(n-2) for n > 1.
a(2^n + 3) = -2 for n > 1.
a(2^n + 4) = 32*(2^(n-3) - 1) = A175165(n-3) for n > 2.
a(2^n + 5) = 2*(2^n - 9) for n > 2.
a(2^n + 6) = -8 for n > 2.
a(2^n + 7) = -2*(8 * 2^(n-3) - 7) for n > 2.
a(2^n + 8) = 64*(2^(n-3) - 2) for n > 3.