A341470 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j,j).
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 41, 63, 1, 1, 9, 85, 377, 321, 1, 1, 11, 145, 1159, 3649, 1683, 1, 1, 13, 221, 2625, 16641, 36365, 8989, 1, 1, 15, 313, 4991, 50049, 246047, 369305, 48639, 1, 1, 17, 421, 8473, 118721, 982729, 3707509, 3800305, 265729, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 3, 5, 7, 9, 11, ... 1, 13, 41, 85, 145, 221, ... 1, 63, 377, 1159, 2625, 4991, ... 1, 321, 3649, 16641, 50049, 118721, ... 1, 1683, 36365, 246047, 982729, 2908411, ...
Links
- Eric Weisstein's World of Mathematics, Delannoy Number.
Crossrefs
Programs
-
PARI
T(n, k) = sum(j=0, n, binomial(k*n, n-j)*binomial(k*n+j, j));
-
PARI
T(n, k) = sum(j=0, n, 2^j*binomial(n, j)*binomial(k*n, j));
Formula
T(n,k) = A008288(n,k*n).
T(n,k) = Sum_{j=0..n} 2^j * binomial(n,j) * binomial(k*n,j).