A331329
a(n) = binomial(5*n, n)*hypergeom([-4*n, -n], [-5*n], -1).
Original entry on oeis.org
1, 9, 145, 2625, 50049, 982729, 19665841, 398796225, 8166636545, 168502295625, 3497529199185, 72949645000065, 1527671538372225, 32100078290806665, 676451066002195825, 14290577765009652865, 302557549412667613185, 6417968867896642617225, 136371773642235542394385
Offset: 0
-
a[n_] := Binomial[5 n, n] Hypergeometric2F1[-4 n, -n, -5 n, -1];
Array[a, 19, 0]
A341491
a(n) = binomial(6*n, n) * hypergeom([-5*n, -n], [-6*n], -1).
Original entry on oeis.org
1, 11, 221, 4991, 118721, 2908411, 72616013, 1837271615, 46943003137, 1208483403179, 31297149356221, 814471993937855, 21281058718583873, 557930580979801755, 14669716953106628781, 386675596518995000191, 10214494658006725840897, 270345191656309313382475
Offset: 0
-
Table[Binomial[6*n, n] * Hypergeometric2F1[-5*n, -n, -6*n, -1], {n,0,20}]
A341477
Coefficients related to the asymptotics of generalized Delannoy numbers.
Original entry on oeis.org
0, 2, 10, 70, 680, 8346, 125504, 2218350, 45335680, 1047314578, 27079557632, 772687787510, 24172386314240, 821114930966890, 30146801401143296, 1187943632192716894, 50068690149298438144, 2245175953053786221730, 106828553482726336102400, 5371204894269759411503910
Offset: 1
Lim_{n->infinity} A001850(n)^(1/n) = ( 3 + 2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = ( 22 + 10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = ( 223 + 70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 + 680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
Showing 1-3 of 3 results.
Comments