A331329
a(n) = binomial(5*n, n)*hypergeom([-4*n, -n], [-5*n], -1).
Original entry on oeis.org
1, 9, 145, 2625, 50049, 982729, 19665841, 398796225, 8166636545, 168502295625, 3497529199185, 72949645000065, 1527671538372225, 32100078290806665, 676451066002195825, 14290577765009652865, 302557549412667613185, 6417968867896642617225, 136371773642235542394385
Offset: 0
-
a[n_] := Binomial[5 n, n] Hypergeometric2F1[-4 n, -n, -5 n, -1];
Array[a, 19, 0]
A341476
Coefficients related to the asymptotics of generalized Delannoy numbers.
Original entry on oeis.org
1, 3, 22, 223, 2792, 42671, 761984, 15707707, 365122688, 9491746747, 271962399232, 8539383210711, 290937486190592, 10710312199270503, 422984587596455936, 17864076455770831219, 802450164859200372736, 38242916911507537149427, 1925477163696152909447168, 102213291475268656299164879
Offset: 1
Lim_{n->infinity} A001850(n)^(1/n) = ( 3 + 2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = ( 22 + 10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = ( 223 + 70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 + 680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
A341477
Coefficients related to the asymptotics of generalized Delannoy numbers.
Original entry on oeis.org
0, 2, 10, 70, 680, 8346, 125504, 2218350, 45335680, 1047314578, 27079557632, 772687787510, 24172386314240, 821114930966890, 30146801401143296, 1187943632192716894, 50068690149298438144, 2245175953053786221730, 106828553482726336102400, 5371204894269759411503910
Offset: 1
Lim_{n->infinity} A001850(n)^(1/n) = ( 3 + 2 * sqrt(1^2 + 1)) / 1^1.
Lim_{n->infinity} A026000(n)^(1/n) = ( 22 + 10 * sqrt(2^2 + 1)) / 2^2.
Lim_{n->infinity} A026001(n)^(1/n) = ( 223 + 70 * sqrt(3^2 + 1)) / 3^3.
Lim_{n->infinity} A331329(n)^(1/n) = ( 2792 + 680 * sqrt(4^2 + 1)) / 4^4.
Lim_{n->infinity} A341491(n)^(1/n) = (42671 + 8346 * sqrt(5^2 + 1)) / 5^5.
A341470
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} binomial(k*n,n-j) * binomial(k*n+j,j).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 41, 63, 1, 1, 9, 85, 377, 321, 1, 1, 11, 145, 1159, 3649, 1683, 1, 1, 13, 221, 2625, 16641, 36365, 8989, 1, 1, 15, 313, 4991, 50049, 246047, 369305, 48639, 1, 1, 17, 421, 8473, 118721, 982729, 3707509, 3800305, 265729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 41, 85, 145, 221, ...
1, 63, 377, 1159, 2625, 4991, ...
1, 321, 3649, 16641, 50049, 118721, ...
1, 1683, 36365, 246047, 982729, 2908411, ...
-
T(n, k) = sum(j=0, n, binomial(k*n, n-j)*binomial(k*n+j, j));
-
T(n, k) = sum(j=0, n, 2^j*binomial(n, j)*binomial(k*n, j));
Showing 1-4 of 4 results.
Comments