A341497 Number of partitions of n with exactly one repeated part and that part is odd.
0, 0, 1, 1, 2, 3, 5, 7, 9, 13, 17, 23, 30, 39, 49, 63, 78, 98, 122, 150, 184, 225, 272, 329, 397, 475, 567, 676, 802, 948, 1121, 1317, 1545, 1810, 2112, 2460, 2863, 3319, 3842, 4442, 5123, 5897, 6782, 7780, 8913, 10200, 11648, 13285, 15136, 17214, 19555, 22191, 25143
Offset: 0
Examples
The a(2) = 1 partition is: 1+1. The a(3) = 1 partition is: 1+1+1. The a(4) = 2 partitions are: 1+1+2, 1+1+1+1. The a(5) = 3 partitions are: 1+1+3, 1+1+1+2, 1+1+1+1+1.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Cristina Ballantine and Mircea Merca, Combinatorial proofs of two theorems related to the number of even parts in all partitions of n into distinct parts, Ramanujan J., 54:1 (2021), 107-112.
Programs
-
PARI
seq(n)={Vec(sum(k=1, (n+2)\4, x^(4*k-2)/(1 - x^(4*k-2)) + O(x*x^n)) * prod(k=1, n, 1 + x^k + O(x*x^n)), -(n+1))}