cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341512 a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).

Original entry on oeis.org

0, 1, 2, 11, 2, 36, 4, 85, 46, 58, 2, 324, 4, 120, 120, 575, 2, 693, 4, 566, 248, 172, 6, 2340, 94, 270, 788, 1176, 2, 1800, 6, 3661, 348, 358, 336, 5967, 4, 492, 548, 4210, 2, 3744, 4, 1820, 2490, 744, 6, 15372, 380, 2271, 720, 2826, 6, 11304, 392, 8760, 992, 946, 2, 15480, 6, 1232, 5164, 22631, 636, 5904, 4, 3866
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2021

Keywords

Crossrefs

Cf. Sequences A001359, A029710, A031924 give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

  • Mathematica
    Array[#2 DivisorSigma[1, #1] - #1 DivisorSigma[1, #2] & @@ {#, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1]} &, 68] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341528(n) = (n*sigma(A003961(n)));
    A341529(n) = (sigma(n)*A003961(n));
    A341512(n) = (A341529(n)-A341528(n));

Formula

a(n) = A341529(n) - A341528(n) = (sigma(n)*A003961(n)) - (n*sigma(A003961(n))).
For all primes p, a(p) = (q*(p+1)) - (p*(q+1)) = (pq + q) - (pq + p) = q - p = A001223(A000720(p)), where q = nextprime(p) = A003961(p).
And in general, a(p^e) = (q^e * (p^(e+1)-1)/(p-1)) - ((p^e) * (q^(e+1)-1)/(q-1)), where q = A003961(p).
Thus, a(p^2) = (p + 1)*q^2 - p^2*q - p^2,
a(p^3) = (p^2 + p + 1)*q^3 - p^3*q^2 - p^3*q - p^3,
a(p^4) = (p^3 + p^2 + p + 1)*q^4 - p^4*q^3 - p^4*q^2 - p^4*q - p^4,
etc.