cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329603 a(n) = A005940(1+(1+(3*A156552(n)))) = (1/2) * A005940(1+(3*A156552(2*n))).

Original entry on oeis.org

2, 5, 8, 15, 18, 11, 50, 45, 20, 125, 98, 33, 242, 245, 32, 135, 338, 77, 578, 375, 72, 605, 722, 99, 42, 845, 60, 735, 1058, 17, 1682, 405, 200, 1445, 162, 231, 1922, 1805, 392, 1125, 2738, 1331, 3362, 1815, 44, 2645, 3698, 297, 110, 275, 968, 2535, 4418, 539, 450, 2205, 1352, 4205, 5618, 51, 6962, 4805, 500, 1215, 882, 1859, 7442, 4335, 2312
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

Function n -> 3n+1 (A016777) conjugated by A156552. - Antti Karttunen, Aug 21 2021

Crossrefs

Permutation of A329604.
A skewed diagonal of A341510.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = ((1/2)*A005940(1+(3*A156552(2*n))));
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime, primepi, factorint
    def A329603(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(1+3*sum((1<Chai Wah Wu, Mar 11 2023

Formula

a(n) = (1/2) * A005940(1+(3*A156552(2*n))).
From Antti Karttunen, Feb 14 2021: (Start)
A156552(2*a(n)) = 3*A156552(2*n) = 3*(1+2*A156552(n)) = 3 + 6*A156552(n).
a(n) = A341510(n,2n) = A005940(1+A156552(n)+A156552(2n)) = A005940(1+(1+(3*A156552(n)))).
a(n) = A005940(1+A016777(A156552(n))).
For all n >= 1, A329903(a(n)) = A332814(a(n)) = A332823(A332461(a(n))) = 1.
For all n >= 1, A341354(a(n)) > 0.
For all n >= 1, A000035(a(n)) = 1 - A000035(n). [Flips the parity of n]
(End)
a(n) = A332449(2*n)/2, a(n) = Sum_{d|n} A347117(d). - Antti Karttunen, Aug 21 2021

Extensions

New primary definition added by Antti Karttunen, Feb 14 2021

A341515 The Collatz or 3x+1 map (A006370) conjugated by unary-binary-encoding (A156552).

Original entry on oeis.org

1, 5, 2, 15, 3, 11, 5, 45, 4, 125, 7, 33, 11, 245, 6, 135, 13, 77, 17, 375, 10, 605, 19, 99, 9, 845, 8, 735, 23, 17, 29, 405, 14, 1445, 15, 231, 31, 1805, 22, 1125, 37, 1331, 41, 1815, 12, 2645, 43, 297, 25, 275, 26, 2535, 47, 539, 21, 2205, 34, 4205, 53, 51, 59, 4805, 20, 1215, 33, 1859, 61, 4335, 38, 3125, 67, 693
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2021

Keywords

Comments

Collatz-conjecture can be formulated via this sequence by postulating that all iterations of a(n), starting from any n > 1, will eventually reach the cycle [2, 5, 3].

Crossrefs

Cf. A005940, A006370, A064989, A156552, A329603, A341510, A347115 (Möbius transform),
Sequences related to iterations of this sequence: A352890, A352891, A352892, A352893, A352894, A352896, A352897, A352898, A352899.
Cf. A341516 (a variant).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A329603(n) = A005940(2+(3*A156552(n)));
    A341515(n) = if(n%2, A064989(n), A329603(n));

Formula

If n is odd, then a(n) = A064989(n), otherwise a(n) = A329603(n) = A341510(n,2*n).
a(n) = A005940(1+A006370(A156552(n))).
Showing 1-2 of 2 results.