cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341530 a(n) = gcd(n*sigma(A003961(n)), sigma(n)*A003961(n)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 36, 4, 5, 1, 2, 2, 36, 2, 24, 120, 1, 2, 9, 4, 2, 8, 4, 6, 180, 1, 18, 4, 168, 2, 360, 2, 7, 12, 2, 336, 117, 2, 12, 4, 10, 2, 288, 4, 364, 30, 24, 6, 36, 19, 3, 360, 18, 6, 72, 56, 120, 16, 2, 2, 360, 2, 16, 4, 1, 12, 144, 4, 2, 60, 336, 2, 45, 2, 6, 10, 12, 264, 72, 4, 2, 11, 2, 6, 2016, 4, 12, 24
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Crossrefs

Cf. A000203, A003961, A003973, A028982 (positions of odd terms), A341512, A341526, A341527, A341528, A341529, A342670.
Cf. A342674 (same sequence applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A341530(n) = { my(t=A003961(n), s=sigma(t)); gcd((n*s), sigma(n)*t); };

Formula

a(n) = gcd(A341528(n), A341529(n)) = gcd(n*A003973(n), A000203(n)*A003961(n)).
a(n) = gcd(A341512(n), A341528(n)) = gcd(A341512(n), A341529(n)) = A342670(A003961(n)). - Antti Karttunen, Mar 24 2021