A341604 Those primitive elements of A337386 that have exactly one primitive nondeficient divisor (A006039).
990, 1170, 4590, 7650, 8550, 19470, 23562, 23868, 26334, 27324, 27846, 31050, 31878, 34452, 35190, 39330, 40194, 44370, 47430, 49590, 53010, 56610, 60030, 62730, 63270, 64170, 65790, 70110, 71910, 73530, 76590, 80370, 80910, 81090, 84870, 90270, 90630, 93330, 93366, 100890, 102510, 104310, 108630, 111690, 117450
Offset: 1
Keywords
Links
Programs
-
PARI
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); }; isA337479(n) = (isA337386(n)&&(1==sumdiv(n,d,isA337386(d)))); isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395 isA006039(n) = ((sigma(n)==(2*n))||isA071395(n)); A337690(n) = sumdiv(n,d,isA006039(d)); isA341604(n) = (isA337479(n)&&(1==A337690(n)));
Comments