cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A341627 Square array A(n,k) = A341527(A246278(n,k)), read by falling antidiagonals; denominators of the columnwise first quotients of A341605/A341606.

Original entry on oeis.org

9, 63, 10, 5, 325, 21, 81, 7, 1519, 22, 189, 1250, 11, 363, 78, 35, 220, 13377, 52, 22477, 119, 33, 455, 117, 66550, 34, 52887, 171, 2511, 260, 4774, 374, 804102, 133, 110827, 115, 325, 6875, 833, 2574, 6669, 584647, 69, 201549, 116, 1323, 3038, 1875181, 627, 205751, 13685, 1790199, 58, 465073, 465
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n =  1       2    3        4      5        6      7             8        9
  2n =  2       4    6        8     10       12     14            16       18
----+--------------------------------------------------------------------------
  1 |   9,     63,   5,      81,   189,      35,    33,         2511,     325,
  2 |  10,    325,   7,    1250,   220,     455,   260,         6875,    3038,
  3 |  21,   1519,  11,   13377,   117,    4774,   833,      1875181,    1089,
  4 |  22,    363,  52,   66550,   374,    2574,   627,     41009441,    6422,
  5 |  78,  22477,  34,  804102,  6669,  205751,  1495,    459974905,  317322,
  6 | 119,  52887, 133,  584647, 13685,  531981, 13804,   2584223261,  775789,
  7 | 171, 110827,  69, 1790199,  9918,  670795, 15903,  11564815861, 1813941,
  8 | 115, 201549,  58, 2202227, 17825, 1016508, 34040,  38495207801, 2325365,
  9 | 116, 465073,  93, 5170468, 68672, 7457205, 90364, 206922836641, 3348124,
etc.
		

Crossrefs

Cf. A341626 (numerators), A341628 (the greatest prime factor of these terms).

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A341627sq(row,col) = A341527(A246278sq(row,col));
    A341627list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341627sq(col,(a-(col-1))))); (v); };
    v341627 = A341627list(up_to);
    A341627(n) = v341627[n];

Formula

A(n,k) = A341527(A246278(n,k)), where A341527(n) is the denominator of the ratio (n * sigma(A003961(n))) / (sigma(n) * A003961(n)), i.e., of A341528(n)/A341529(n).
For all n, k, A(n,k) > A341626(n, k).

A341607 Square array A(n,k) = A006530(A017666(A246278(n,k))), read by falling antidiagonals.

Original entry on oeis.org

2, 2, 3, 1, 3, 5, 2, 5, 5, 7, 5, 3, 7, 7, 11, 3, 7, 5, 11, 11, 13, 7, 5, 11, 7, 13, 13, 17, 2, 11, 7, 13, 11, 17, 17, 19, 3, 3, 13, 11, 17, 13, 19, 19, 23, 5, 5, 5, 17, 13, 19, 17, 23, 23, 29, 11, 7, 7, 7, 19, 17, 23, 19, 29, 29, 31, 2, 13, 11, 11, 11, 23, 19, 29, 23, 31, 31, 37, 13, 3, 17, 13, 13, 13, 29, 23, 31, 29, 37, 37, 41
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n=   1   2   3   4   5   6   7   8   9  10  11  12   13  14  15  16   17
  2n=   2   4   6   8  10  12  14  16  18  20  22  24   26  28  30  32   34
-----+----------------------------------------------------------------------
   1 |  2,  2,  1,  2,  5,  3,  7,  2,  3,  5, 11,  2,  13,  1,  5,  2,  17,
   2 |  3,  3,  5,  3,  7,  5, 11,  3,  5,  7, 13,  3,  17, 11,  7,  3,  19,
   3 |  5,  5,  7,  5, 11,  7, 13,  5,  7, 11, 17,  7,  19, 13, 11,  5,  23,
   4 |  7,  7, 11,  7, 13, 11, 17,  7, 11, 13, 19, 11,  23, 17, 13,  7,  29,
   5 | 11, 11, 13, 11, 17, 13, 19, 11, 13, 17, 23, 13,  29,*11, 17, 11,  31,
   6 | 13, 13, 17, 13, 19, 17, 23, 13, 17, 19, 29,*13,  31, 23, 19, 13,  37,
   7 | 17, 17, 19, 17, 23, 19, 29, 17, 19, 23, 31, 19,  37, 29, 23, 17,  41,
   8 | 19, 19, 23, 19, 29, 23, 31, 19, 23, 29, 37, 23,  41, 31, 29, 19,  43,
   9 | 23, 23, 29, 23, 31, 29, 37, 23, 29, 31, 41, 29,  43, 37, 31, 23,  47,
  10 | 29, 29, 31, 29, 37, 31, 41, 29, 31, 37, 43, 31,  47, 41, 37, 29,  53,
  11 | 31, 31, 37, 31, 41, 37, 43, 31, 37, 41, 47,*31,  53, 43, 41, 31,  59,
  12 | 37, 37, 41, 37, 43, 41, 47, 37, 41, 43, 53, 41,  59, 47, 43, 37,  61,
  13 | 41, 41, 43, 41, 47, 43, 53, 41, 43, 47, 59, 43,  61, 53, 47, 41,  67,
  14 | 43, 43, 47, 43, 53, 47, 59, 43, 47, 53, 61, 47,  67, 59, 53, 43,  71,
  15 | 47, 47, 53, 47, 59, 53, 61, 47, 53, 59, 67, 53,  71, 47, 59, 47,  73,
  16 | 53, 53, 59, 53, 61, 59, 67, 53, 59, 61, 71, 59,  73, 67, 61, 53,  79,
  17 | 59, 59, 61, 59, 67, 61, 71, 59, 61, 67, 73, 61,  79, 71, 67, 59,  83,
  18 | 61, 61, 67, 61, 71, 67, 73, 61, 67, 71, 79, 67,  83, 73, 71, 61,  89,
  19 | 67, 67, 71, 67, 73, 71, 79, 67, 71, 73, 83, 71,  89, 79, 73, 67,  97,
  20 | 71, 71, 73, 71, 79, 73, 83, 71, 73, 79, 89, 73,  97, 83, 79, 71, 101,
  21 | 73, 73, 79, 73, 83, 79, 89, 73, 79, 83, 97, 79, 101, 89, 83, 73, 103,
etc.
Positions where columns are not strictly monotonic are marked with an asterisk (*). See the example section of A341606 for further elaboration.
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A017666(n) = denominator(sigma(n)/n);
    A341607sq(row,col) = A006530(A017666(A246278sq(row,col)));
    A341607list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341607sq(col,(a-(col-1))))); (v); };
    v341607 = A341607list(up_to);
    A341607(n) = v341607[n];

Formula

A(n,k) = A006530(A341606(n, k)) = A006530(A017666(A246278(n,k))).

A341608 Square array A(n,k) = A341524(A246278(n,k)), read by falling antidiagonals; number of prime factors (with mult.) in the denominator of abundancy index as applied onto prime shift array A246278.

Original entry on oeis.org

1, 2, 1, 0, 2, 1, 3, 1, 2, 1, 1, 3, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 3, 2, 2, 1, 4, 1, 3, 1, 3, 2, 2, 1, 2, 4, 2, 3, 2, 3, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 2, 2, 1, 1, 3, 3, 4, 2, 3, 2, 3, 2, 2, 1, 1, 2, 3, 2, 4, 2, 3, 2, 3, 2, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 2, 3, 2, 2, 1, 0, 1, 4, 2, 3, 3, 4, 2, 3, 2, 3, 2, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 16 2021

Keywords

Examples

			The top left corner of the array:
   n=  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21
  2n=  2  4  6  8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
-----+---------------------------------------------------------------
   1 | 1, 2, 0, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 0, 1, 5, 1, 4, 1, 2, 1,
   2 | 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 2, 1, 2, 2, 5, 2, 4, 1, 4, 2,
   3 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 1, 3, 3, 5, 2, 4, 1, 4, 2,
   4 | 1, 2, 2, 3,*1, 3, 2, 4,*2,*2, 2, 4, 2, 3,*2, 5, 2,*3, 2,*3, 3,
   5 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2,*2, 3, 5, 2, 4, 2, 4, 3,
   6 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2,*3, 2, 3, 3, 5, 2, 4, 2, 4, 3,
   7 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
   8 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3,*1, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
   9 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  10 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  11 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2,*3, 2, 3, 3, 5, 2, 4,*1, 4, 3,
  12 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  13 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  14 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  15 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2,*2, 3, 5, 2, 4, 2, 4, 3,
  16 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  17 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  18 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  19 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  20 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
  21 | 1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3,
etc.
Positions where columns are not monotonic (i.e., with sudden drops) are marked with an asterisk (*). See the example section of A341606 for their further elaboration.
		

Crossrefs

Sequence A341524 applied to prime shift array A246278.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A017666(n) = denominator(sigma(n)/n);
    A341608sq(row,col) = bigomega(A017666(A246278sq(row,col)));
    A341608list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341608sq(col,(a-(col-1))))); (v); };
    v341608 = A341608list(up_to);
    A341608(n) = v341608[n];

Formula

A(n,k) = A001222(A341606(n,k)) = A001222(A017666(A246278(n,k))).

A342668 Largest prime in the denominator of ratio A341528(n)/A341529(n) (when presented in its lowest terms).

Original entry on oeis.org

1, 3, 5, 7, 7, 5, 11, 3, 13, 7, 13, 7, 17, 11, 7, 31, 19, 13, 23, 7, 11, 13, 29, 5, 31, 17, 5, 11, 31, 7, 37, 3, 13, 19, 11, 7, 41, 23, 17, 7, 43, 11, 47, 3, 13, 29, 53, 31, 11, 31, 19, 17, 59, 5, 13, 11, 23, 31, 61, 7, 67, 37, 13, 127, 17, 13, 71, 19, 29, 11, 73, 13, 79, 41, 31, 23, 13, 17, 83, 31, 11, 43, 89, 11
Offset: 1

Views

Author

Antti Karttunen, Mar 24 2021

Keywords

Crossrefs

Cf. A341628 (same sequence applied onto prime shift array A246278).

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A341527(n) = { my(s=A003961(n)); denominator((sigma(s)*n)/(sigma(n)*s)); };
    A342668(n) = A006530(A341527(n));

Formula

a(n) = A006530(A341527(n)).
Showing 1-5 of 5 results.