cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341636 a(n) = Sum_{d|n} phi(d) * tau(d) * tau(n/d).

Original entry on oeis.org

1, 4, 6, 13, 10, 24, 14, 38, 29, 40, 22, 78, 26, 56, 60, 103, 34, 116, 38, 130, 84, 88, 46, 228, 79, 104, 124, 182, 58, 240, 62, 264, 132, 136, 140, 377, 74, 152, 156, 380, 82, 336, 86, 286, 290, 184, 94, 618, 153, 316, 204, 338, 106, 496, 220, 532, 228, 232, 118, 780, 122, 248
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2021

Keywords

Comments

Inverse Moebius transform of A062949.

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d] DivisorSigma[0, d] DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 62}]
    Table[Sum[DivisorSigma[0, GCD[n, k]] DivisorSigma[0, n/GCD[n, k]], {k, n}], {n, 62}]
    f[p_, e_] := (p + 1 + e*(p - 1) + p^(e + 1)*(e*(p - 1) + p - 3))/(p - 1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*numdiv(d)*numdiv(n/d)); \\ Michel Marcus, Feb 17 2021

Formula

a(n) = Sum_{k=1..n} tau(gcd(n,k)) * tau(n/gcd(n,k)).
a(n) = Sum_{d|n} A062949(d).
Multiplicative with a(p^e) = (p + 1 + e*(p-1) + p^(e+1)*(e*(p-1)+p-3))/(p-1)^2. - Amiram Eldar, Sep 15 2023