cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341655 a(n) is the number of divisors of prime(n)^2 - 1.

Original entry on oeis.org

2, 4, 8, 10, 16, 16, 18, 24, 20, 32, 28, 24, 40, 32, 24, 32, 32, 32, 32, 60, 30, 48, 32, 60, 42, 48, 40, 32, 64, 48, 54, 64, 40, 64, 48, 60, 32, 40, 40, 32, 48, 96, 64, 32, 72, 90, 64, 56, 32, 64, 60, 96, 72, 96, 40, 40, 64, 96, 32, 80, 32, 48, 96, 80, 40, 32
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 25 2021

Keywords

Comments

a(n) >= A309906(2) = 32 for n > 21.

Examples

			        p =                factorization
   n  prime(n)  p^2 - 1      of p^2 - 1      a(n)
  --  --------  -------  ------------------  ----
   1      2         3    3                     2
   2      3         8    2^3                   4
   3      5        24    2^3 * 3               8
   4      7        48    2^4 * 3              10
   5     11       120    2^3 * 3 * 5          16
   6     13       168    2^3 * 3 * 7          16
   7     17       288    2^5 * 3^2            18
   8     19       360    2^3 * 3^2 * 5        24
   9     23       528    2^4 * 3 * 11         20
  10     29       840    2^3 * 3 * 5 * 7      32
  11     31       960    2^6 * 3 * 5          28
  12     37      1368    2^3 * 3^2 * 19       24
  13     41      1680    2^4 * 3 * 5 * 7      40
  14     43      1848    2^3 * 3 * 7 * 11     32
  15     47      2208    2^5 * 3 * 23         24
  16     53      2808    2^3 * 3^3 * 13       32
  17     59      3480    2^3 * 3 * 5 * 29     32
  18     61      3720    2^3 * 3 * 5 * 31     32
  19     67      4488    2^3 * 3 * 11 * 17    32
  20     71      5040    2^4 * 3^2 * 5 * 7    60
  21     73      5328    2^4 * 3^2 * 37       30
  22     79      6240    2^5 * 3 * 5 * 13     48
  23     83      6888    2^3 * 3 * 7 * 41     32
  24     89      7920    2^4 * 3^2 * 5 * 11   60
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0,Prime[n]^2-1],{n,66}] (* Stefano Spezia, Feb 25 2021 *)
  • PARI
    a(n) = numdiv(prime(n)^2-1); \\ Michel Marcus, Feb 25 2021

Formula

a(n) = A000005(A000040(n)^2 - 1) = A000005(A084920(n)).