A341658 Primes p such that p^2 - 1 has 32 divisors.
29, 43, 53, 59, 61, 67, 83, 107, 157, 173, 193, 227, 277, 283, 317, 347, 563, 653, 733, 787, 877, 907, 997, 1213, 1237, 1283, 1307, 1523, 1867, 2083, 2693, 2797, 2803, 3253, 3413, 3517, 3643, 3677, 3733, 3803, 4253, 4363, 4547, 4723, 5387, 5443, 5483, 5717
Offset: 1
Keywords
Examples
p = factorization n a(n) p^2 - 1 of (p^2 - 1) -- ---- ------- ------------------- 1 29 840 2^3 * 3 * 5 * 7 2 43 1848 2^3 * 3 * 7 * 11 3 53 2808 2^3 * 3^3 * 13 4 59 3480 2^3 * 3 * 5 * 29 5 61 3720 2^3 * 3 * 5 * 31 6 67 4488 2^3 * 3 * 11 * 17 7 83 6888 2^3 * 3 * 7 * 41 8 107 11448 2^3 * 3^3 * 53 9 157 24648 2^3 * 3 * 13 * 79 10 173 29928 2^3 * 3 * 29 * 43 11 193 37248 2^7 * 3 * 97
Programs
-
Mathematica
Select[Range[6000], PrimeQ[#] && DivisorSigma[0, #^2 - 1] == 32 &] (* Amiram Eldar, Feb 26 2021 *)
-
PARI
isok(p) = isprime(p) && (numdiv(p^2-1) == 32); \\ Michel Marcus, Feb 26 2021
Comments