A341662 Primes p such that p^4 - 1 has 160 divisors.
53, 67, 131, 139, 227, 277, 283, 347, 383, 641, 653, 661, 821, 877, 997, 1069, 1181, 1213, 1811, 2083, 2389, 2459, 2819, 3803, 4021, 4253, 4723, 6619, 6829, 7213, 7933, 8069, 9013, 9187, 10589, 11261, 16139, 17827, 18133, 18587, 19309, 19541, 20477, 20947
Offset: 1
Keywords
Examples
p = n a(n) p^4 - 1 factorization of p^4 - 1 -- ---- ------------ ------------------------------- 1 53 7890480 2^4 * 3^3 * 5 * 13 * 281 2 67 20151120 2^4 * 3 * 5 * 11 * 17 * 449 3 131 294499920 2^4 * 3 * 5 * 11 * 13 * 8581 4 139 373301040 2^4 * 3 * 5 * 7 * 23 * 9661 5 227 2655237840 2^4 * 3 * 5 * 19 * 113 * 5153 6 277 5887339440 2^4 * 3 * 5 * 23 * 139 * 7673 7 283 6414247920 2^4 * 3 * 5 * 47 * 71 * 8009 8 347 14498327280 2^4 * 3 * 5 * 29 * 173 * 12041 9 383 21517662720 2^9 * 3 * 5 * 191 * 14669 10 641 168823196160 2^9 * 3 * 5 * 107 * 205441 11 653 181824635280 2^4 * 3 * 5 * 109 * 163 * 42641
Programs
-
Mathematica
Select[Range[21000], PrimeQ[#] && DivisorSigma[0, #^4 - 1] == 160 &] (* Amiram Eldar, Feb 26 2021 *)
-
PARI
isok(p) = isprime(p) && (numdiv(p^4-1) == 160); \\ Michel Marcus, Feb 26 2021
Comments