cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341662 Primes p such that p^4 - 1 has 160 divisors.

Original entry on oeis.org

53, 67, 131, 139, 227, 277, 283, 347, 383, 641, 653, 661, 821, 877, 997, 1069, 1181, 1213, 1811, 2083, 2389, 2459, 2819, 3803, 4021, 4253, 4723, 6619, 6829, 7213, 7933, 8069, 9013, 9187, 10589, 11261, 16139, 17827, 18133, 18587, 19309, 19541, 20477, 20947
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

Conjecture: sequence is infinite.
For every term p, p^4 - 1 is of the form 2^4 * 3 * 5 * q * r * s, where q, r, and s are distinct primes > 5, with three exceptions: p = 53, 383, and 641 (see Example section).

Examples

			      p =
   n  a(n)     p^4 - 1    factorization of p^4 - 1
  --  ----  ------------  -------------------------------
   1    53       7890480  2^4 * 3^3 * 5 * 13 * 281
   2    67      20151120  2^4 * 3 * 5 * 11 * 17 * 449
   3   131     294499920  2^4 * 3 * 5 * 11 * 13 * 8581
   4   139     373301040  2^4 * 3 * 5 * 7 * 23 * 9661
   5   227    2655237840  2^4 * 3 * 5 * 19 * 113 * 5153
   6   277    5887339440  2^4 * 3 * 5 * 23 * 139 * 7673
   7   283    6414247920  2^4 * 3 * 5 * 47 * 71 * 8009
   8   347   14498327280  2^4 * 3 * 5 * 29 * 173 * 12041
   9   383   21517662720  2^9 * 3 * 5 * 191 * 14669
  10   641  168823196160  2^9 * 3 * 5 * 107 * 205441
  11   653  181824635280  2^4 * 3 * 5 * 109 * 163 * 42641
		

Crossrefs

Programs

  • Mathematica
    Select[Range[21000], PrimeQ[#] && DivisorSigma[0, #^4 - 1] == 160 &] (* Amiram Eldar, Feb 26 2021 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p^4-1) == 160); \\ Michel Marcus, Feb 26 2021