A341666 Primes p such that p^6 - 1 has 384 divisors.
29, 43, 59, 83, 157, 193, 317, 1093, 1373, 1523, 2803, 3557, 3677, 3733, 12227, 13093, 20507, 25933, 28163, 29243, 32443, 33493, 38603, 53917, 100523, 109883, 122117, 134363, 140197, 190573, 236723, 242773, 249397, 256757, 258403, 274237, 299723, 333283
Offset: 1
Keywords
Examples
p = n a(n) factorization of p^6 - 1 - ---- ------------------------------------------------------ 1 29 2^3 * 3^2 * 5 * 7 * 13 * 67 * 271 2 43 2^3 * 3^2 * 7 * 11 * 13 * 139 * 631 3 59 2^3 * 3^2 * 5 * 7 * 29 * 163 * 3541 4 83 2^3 * 3^2 * 7 * 19 * 41 * 367 * 2269 5 157 2^3 * 3^2 * 7 * 13 * 79 * 3499 * 8269 6 193 2^7 * 3^2 * 7 * 97 * 1783 * 37057 7 317 2^3 * 3^2 * 7 * 53 * 79 * 14401 * 33391 8 1093 2^3 * 3^2 * 7 * 13 * 547 * 398581 * 1193557 9 1373 2^3 * 3^2 * 7^3 * 229 * 627919 * 1886503
Programs
-
Mathematica
Select[Range[350000], PrimeQ[#] && DivisorSigma[0, #^6 - 1] == 384 &] (* Amiram Eldar, Feb 27 2021 *)
-
PARI
isok(p) = isprime(p) && (numdiv(p^6-1) == 384); \\ Michel Marcus, Feb 27 2021
Comments