cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341666 Primes p such that p^6 - 1 has 384 divisors.

Original entry on oeis.org

29, 43, 59, 83, 157, 193, 317, 1093, 1373, 1523, 2803, 3557, 3677, 3733, 12227, 13093, 20507, 25933, 28163, 29243, 32443, 33493, 38603, 53917, 100523, 109883, 122117, 134363, 140197, 190573, 236723, 242773, 249397, 256757, 258403, 274237, 299723, 333283
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

Conjecture: sequence is infinite.
For every term p, p^6 - 1 is of the form 2^3 * 3^2 * 7 * q * r * s * t, where q, r, s, and t are distinct primes > 7, with four exceptions: p = 29, 59, 193, and 1373 (see Example section).

Examples

			  p =
n a(n)                factorization of p^6 - 1
- ---- ------------------------------------------------------
1   29 2^3 * 3^2 * 5 * 7   *  13 *     67 *     271
2   43 2^3 * 3^2     * 7   *  11 *     13 *     139 *     631
3   59 2^3 * 3^2 * 5 * 7   *  29 *    163 *    3541
4   83 2^3 * 3^2     * 7   *  19 *     41 *     367 *    2269
5  157 2^3 * 3^2     * 7   *  13 *     79 *    3499 *    8269
6  193 2^7 * 3^2     * 7   *  97 *   1783 *   37057
7  317 2^3 * 3^2     * 7   *  53 *     79 *   14401 *   33391
8 1093 2^3 * 3^2     * 7   *  13 *    547 *  398581 * 1193557
9 1373 2^3 * 3^2     * 7^3 * 229 * 627919 * 1886503
		

Crossrefs

Programs

  • Mathematica
    Select[Range[350000], PrimeQ[#] && DivisorSigma[0, #^6 - 1] == 384 &] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p^6-1) == 384); \\ Michel Marcus, Feb 27 2021