A341667 Primes p such that p^6 - 1 has fewer than 384 divisors.
2, 3, 5, 7, 11, 13, 17, 19, 23, 41, 53, 71, 73, 167
Offset: 1
Examples
p = n a(n) factorization of p^6 - 1 tau(p^6 - 1) -- ---- --------------------------------- ------------ 1 2 3^2 * 7 6 2 3 2^3 * 7 * 13 16 3 5 2^3 * 3^2 * 7 * 31 48 4 7 2^4 * 3^2 * 19 * 43 60 5 11 2^3 * 3^2 * 5 * 7 * 19 * 37 192 6 13 2^3 * 3^2 * 7 * 61 * 157 96 7 17 2^5 * 3^3 * 7 * 13 * 307 192 8 19 2^3 * 3^3 * 5 * 7^3 * 127 256 9 23 2^4 * 3^2 * 7 * 11 * 13^2 * 79 360 10 41 2^4 * 3^2 * 5 * 7 * 547 * 1723 240 11 53 2^3 * 3^4 * 7 * 13 * 409 * 919 320 12 71 2^4 * 3^3 * 5 * 7 * 1657 * 5113 320 13 73 2^4 * 3^3 * 7 * 37 * 751 * 1801 320 14 167 2^4 * 3^2 * 7 * 83 * 9241 * 28057 240
Programs
-
Mathematica
Select[Range[200], PrimeQ[#] && DivisorSigma[0, #^6 - 1] < 384 &] (* Amiram Eldar, Feb 27 2021 *)
Comments