cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341669 Primes p such that p^7 - 1 has 8 divisors.

Original entry on oeis.org

863, 1439, 2039, 3167, 3803, 4799, 10559, 11423, 14087, 14207, 15287, 15803, 16139, 18743, 20663, 21059, 21179, 22343, 25307, 25919, 26459, 29483, 29759, 30803, 32507, 32987, 33107, 34319, 34367, 35879, 43427, 45887, 46559, 46643, 46919, 54959, 57119, 57587
Offset: 1

Views

Author

Jon E. Schoenfield, Feb 26 2021

Keywords

Comments

For each term p, p^7 - 1 = (p-1)*(p^6 + p^5 + p^4 + p^3 + p^2 + p + 1) is a number of the form 2*q*r (where q and r are distinct primes): p-1 = 2*q and p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 = r.
Conjecture: sequence is infinite.

Examples

			      p =
  n   a(n)        factorization of p^7 - 1
  -  -----  ------------------------------------
  1    863  2 *  431 *        413588356833933793
  2   1439  2 *  719 *       8885189025331426081
  3   2039  2 * 1019 *      71897932302115976281
  4   3167  2 * 1583 *    1009312223899992366817
  5   3803  2 * 1901 *    3026022586778671180093
  6   4799  2 * 2399 *   12217856103420111345601
  7  10559  2 * 5279 * 1386046726502834819142721
  8  11423  2 * 5711 * 2221872233870122705845793
  9  14087  2 * 7043 * 7815232779386331437540137
		

Crossrefs

Programs

  • Mathematica
    Select[Range[60000], PrimeQ[#] && DivisorSigma[0, #^7 - 1] == 8 &] (* Amiram Eldar, Feb 27 2021 *)
  • PARI
    isok(p) = isprime(p) && (numdiv(p^7-1) == 8); \\ Michel Marcus, Feb 27 2021