A341669 Primes p such that p^7 - 1 has 8 divisors.
863, 1439, 2039, 3167, 3803, 4799, 10559, 11423, 14087, 14207, 15287, 15803, 16139, 18743, 20663, 21059, 21179, 22343, 25307, 25919, 26459, 29483, 29759, 30803, 32507, 32987, 33107, 34319, 34367, 35879, 43427, 45887, 46559, 46643, 46919, 54959, 57119, 57587
Offset: 1
Keywords
Examples
p = n a(n) factorization of p^7 - 1 - ----- ------------------------------------ 1 863 2 * 431 * 413588356833933793 2 1439 2 * 719 * 8885189025331426081 3 2039 2 * 1019 * 71897932302115976281 4 3167 2 * 1583 * 1009312223899992366817 5 3803 2 * 1901 * 3026022586778671180093 6 4799 2 * 2399 * 12217856103420111345601 7 10559 2 * 5279 * 1386046726502834819142721 8 11423 2 * 5711 * 2221872233870122705845793 9 14087 2 * 7043 * 7815232779386331437540137
Programs
-
Mathematica
Select[Range[60000], PrimeQ[#] && DivisorSigma[0, #^7 - 1] == 8 &] (* Amiram Eldar, Feb 27 2021 *)
-
PARI
isok(p) = isprime(p) && (numdiv(p^7-1) == 8); \\ Michel Marcus, Feb 27 2021
Comments