A341711 a(n) = A120963(2*n+1)/2.
1, 5, 19, 59, 165, 419, 1001, 2257, 4877, 10133, 20399, 39881, 76085, 141877, 259373, 465493, 821813, 1428725, 2449573, 4145249, 6931259, 11459483, 18749007, 30373189, 48752125, 77568683, 122406223, 191651957, 297856813, 459652759, 704595749, 1073152385
Offset: 0
Keywords
Links
- D. Weigel, R. Veysseyre, T. Phan, J. M. Effantin, and Y. Billiet, Crystallography, geometry and physics in higher dimensions. I. Point-symmetry operations, Acta Cryst., A40 (1984), 323-330 (see Table 3).
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; nops(invphi(n)) end: g:= proc(n) option remember; `if`(n=0, 1, add( g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n) end: a:= n-> g(2*n+1)/2: seq(a(n), n=0..40); # Alois P. Heinz, Feb 19 2021
-
Mathematica
terms = 64; (* number of terms of A120963 *) nmax = Floor[terms/2] - 1; S[m_] := S[m] = CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 1, m*terms}] + O[x]^(terms + 1),x]; S[m = 1]; S[m++]; While[S[m] != S[m - 1], m++]; A120963 = S[m]; a[n_ /; 0 <= n <= nmax] := A120963[[2 n + 2]]/2; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, May 12 2022 *)
Comments