A360520 a(n) = A120963(n) + A341711(floor(n/2)).
2, 3, 11, 15, 43, 57, 137, 177, 389, 495, 1003, 1257, 2421, 3003, 5515, 6771, 12011, 14631, 25143, 30399, 50931, 61197, 100161, 119643, 192051, 228255, 359839, 425631, 660623, 778119, 1190359, 1396479, 2109119, 2465439, 3679263, 4286175, 6327871, 7348719
Offset: 0
Keywords
Examples
n=4: a(4) = A120963(4) + A341711(2) = 24 + 19 = 43.
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; nops(invphi(n)) end: g:= proc(n) option remember; `if`(n=0, 1, add( g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n) end: a:= n-> g(n)+g(2*iquo(n, 2)+1)/2: seq(a(n), n=0..40); # Alois P. Heinz, Mar 02 2023
-
Mathematica
b[n_] := b[n] = Length[invphi[n]]; g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[d*b[d], {d, Divisors[j]}], {j, 1, n}]/n]; a[n_] := g[n] + g[2*Quotient[n, 2] + 1]/2; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 16 2023, after Alois P. Heinz and using Maxim Rytin's invphi program (see A007617) *)
Comments